Skip to main content

Advertisement

Log in

The Genetics and Epigenetics of Atopic Dermatitis—Filaggrin and Other Polymorphisms

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease caused by a combination of genetic and environmental factors. Genetic evidences depict a complex network comprising by epidermal barrier dysfunctions and dysregulation of innate and adaptive immunity in the pathogenesis of AD. Mutations in the human filaggrin gene (FLG) are the most significant and well-replicated genetic mutation associated with AD, and other mutations associated with epidermal barriers such as SPINK5, FLG-2, SPRR3, and CLDN1 have all been linked to AD. Gene variants may also contribute to the abnormal innate and adaptive responses found in AD, including mutations in PRRs and AMPs, TSLP and TSLPR, IL-1 family cytokines and receptors genes, vitamin D pathway genes, FCER1A, and Th2 and other cytokines genes. GWAS and Immunochip analysis have identified a total of 19 susceptibility loci for AD. Candidate genes at these susceptibility loci identified by GWAS and Immunochip analysis also suggest roles for epidermal barrier functions, innate and adaptive immunity, interleukin-1 family signaling, regulatory T cells, the vitamin D pathway, and the nerve growth factor pathway in the pathogenesis of AD. Increasing evidences show the modern lifestyle (i.e., the hygiene hypothesis, Western diet) and other environmental factors such as pollution and environmental tobacco smoke (ETS) lead to the increasing prevalence of AD with the development of industrialization. Epigenetic alterations in response to these environmental factors, including DNA methylation and microRNA related to immune system and skin barriers, have been found to contribute to the pathogenesis of AD. Genetic variants and epigenetic alteration might be the key tools for the molecular taxonomy of AD and provide the background for the personalized management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bieber T (2008) Atopic dermatitis. N Engl J Med 358:1483–1494

    Article  CAS  PubMed  Google Scholar 

  2. Esparza-Gordillo J, Weidinger S, Folster-Holst R et al (2009) A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet 41:596–601

    Article  CAS  PubMed  Google Scholar 

  3. Sun LD, Xiao FL, Li Y et al (2011) Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet 43:690–694

    Article  CAS  PubMed  Google Scholar 

  4. Paternoster L, Standl M, Chen CM et al (2011) Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 44:187–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hirota T, Takahashi A, Kubo M et al (2012) Genome-wide association study identifies eight new susceptibility loci for atopic dermatitis in the Japanese population. Nat Genet 44:1222–1226

    Article  CAS  PubMed  Google Scholar 

  6. Ellinghaus D, Baurecht H, Esparza-Gordillo J et al (2013) High-density genotyping study identifies four new susceptibility loci for atopic dermatitis. Nat Genet 45:808–812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mu Z, Zhao Y, Liu X, Chang C, Zhang J (2014) Molecular biology of atopic dermatitis. Clin Rev Allergy Immunol 47:193–218

    Article  CAS  PubMed  Google Scholar 

  8. Morales Suarez-Varela M, Garcia-Marcos L, Kogan MD et al (2008) Parents’ smoking habit and prevalence of atopic eczema in 6-7 and 13-14 year-old schoolchildren in Spain. ISAAC phase III. Allergol Immunopathol (Madr) 36:336–342

    Article  CAS  Google Scholar 

  9. Leung DY, Bieber T (2003) Atopic dermatitis. Lancet 361:151–160

    Article  PubMed  Google Scholar 

  10. Schafer T, Heinrich J, Wjst M et al (1999) Indoor risk factors for atopic eczema in school children from East Germany. Environ Res 81:151–158

    Article  CAS  PubMed  Google Scholar 

  11. Wang IJ, Chen SL, Lu TP, Chuang EY, Chen PC (2013) Prenatal smoke exposure, DNA methylation, and childhood atopic dermatitis. Clin Exp Allergy 43:535–543

    Article  CAS  PubMed  Google Scholar 

  12. Jirtle RL, Skinner MK (2007) Environmental epigenomics and disease susceptibility. Nat Rev Genet 8:253–262

    Article  CAS  PubMed  Google Scholar 

  13. Feil R, Fraga MF (2012) Epigenetics and the environment: emerging patterns and implications. Nat Rev Genet 13:97–109

    CAS  PubMed  Google Scholar 

  14. Herberth G, Bauer M, Gasch M et al (2014) Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 133:543–550

    Article  CAS  PubMed  Google Scholar 

  15. Hinz D, Bauer M, Roder S et al (2012) Cord blood Tregs with stable FOXP3 expression are influenced by prenatal environment and associated with atopic dermatitis at the age of one year. Allergy 67:380–389

    Article  CAS  PubMed  Google Scholar 

  16. Rodriguez E, Baurecht H, Wahn AF et al (2014) An integrated epigenetic and transcriptomic analysis reveals distinct tissue-specific patterns of DNA methylation associated with atopic dermatitis. J Investig Dermatol 134:1873–1883

    Article  CAS  PubMed  Google Scholar 

  17. Tezza G, Mazzei F, Boner A (2013) Epigenetics of allergy. Early Hum Dev 89(Suppl 1):S20–S21

    Article  CAS  PubMed  Google Scholar 

  18. Sharma S, Litonjua A (2014) Asthma, allergy, and responses to methyl donor supplements and nutrients. J Allergy Clin Immunol 133:1246–1254

    Article  CAS  PubMed  Google Scholar 

  19. Sandilands A, Sutherland C, Irvine AD, McLean WH (2009) Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122:1285–1294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown SJ, McLean WH (2012) One remarkable molecule: filaggrin. J Investig Dermatol 132:751–762

    Article  CAS  PubMed  Google Scholar 

  21. McAleer MA, Irvine AD (2013) The multifunctional role of filaggrin in allergic skin disease. J Allergy Clin Immunol 131:280–291

    Article  CAS  PubMed  Google Scholar 

  22. Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365:1315–1327

    Article  CAS  PubMed  Google Scholar 

  23. Elias PM, Wakefield JS (2014) Mechanisms of abnormal lamellar body secretion and the dysfunctional skin barrier in patients with atopic dermatitis. J Allergy Clin Immunol 134:781–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Palmer CN, Irvine AD, Terron-Kwiatkowski A et al (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez E, Baurecht H, Herberich E et al (2009) Meta-analysis of filaggrin polymorphisms in eczema and asthma: robust risk factors in atopic disease. J Allergy Clin Immunol 123:1361–1370

    Article  CAS  PubMed  Google Scholar 

  26. van den Oord RA, Sheikh A (2009) Filaggrin gene defects and risk of developing allergic sensitisation and allergic disorders: systematic review and meta-analysis. BMJ 339:b2433

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Brown SJ, McLean WH (2009) Eczema genetics: current state of knowledge and future goals. J Investig Dermatol 129:543–552

    Article  CAS  PubMed  Google Scholar 

  28. Brown SJ, Sandilands A, Zhao Y et al (2008) Prevalent and low-frequency null mutations in the filaggrin gene are associated with early-onset and persistent atopic eczema. J Investig Dermatol 128:1591–1594

    Article  CAS  PubMed  Google Scholar 

  29. Margolis DJ, Apter AJ, Gupta J et al (2012) The persistence of atopic dermatitis and filaggrin (FLG) mutations in a US longitudinal cohort. J Allergy Clin Immunol 130:912–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weidinger S, Rodriguez E, Stahl C et al (2007) Filaggrin mutations strongly predispose to early-onset and extrinsic atopic dermatitis. J Investig Dermatol 127:724–726

    Article  CAS  PubMed  Google Scholar 

  31. Gao PS, Rafaels NM, Hand T et al (2009) Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol 124:507–513, 513 e501-507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Weidinger S, O’Sullivan M, Illig T et al (2008) Filaggrin mutations, atopic eczema, hay fever, and asthma in children. J Allergy Clin Immunol 121:1203–1209

    Article  CAS  PubMed  Google Scholar 

  33. Palmer CN, Ismail T, Lee SP et al (2007) Filaggrin null mutations are associated with increased asthma severity in children and young adults. J Allergy Clin Immunol 120:64–68

    Article  CAS  PubMed  Google Scholar 

  34. Brown SJ, Asai Y, Cordell HJ et al (2011) Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127:661–667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Henderson J, Northstone K, Lee SP et al (2008) The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol 121:872–877

    Article  CAS  PubMed  Google Scholar 

  36. O’Regan GM, Kemperman PM, Sandilands A et al (2008) Raman profiles of the stratum corneum define 3 filaggrin genotype-determined atopic dermatitis endophenotypes. J Allergy Clin Immunol 126:574–580

    Article  CAS  Google Scholar 

  37. Kezic S, O’Regan GM, Lutter R et al (2012) Filaggrin loss-of-function mutations are associated with enhanced expression of IL-1 cytokines in the stratum corneum of patients with atopic dermatitis and in a murine model of filaggrin deficiency. J Allergy Clin Immunol 129:1031–1039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Murphy JE, Robert C, Kupper TS (2000) Interleukin-1 and cutaneous inflammation: a crucial link between innate and acquired immunity. J Investig Dermatol 114:602–608

    Article  CAS  PubMed  Google Scholar 

  39. Brown SJ, Kroboth K, Sandilands A et al (2012) Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Investig Dermatol 132:98–104

    Article  CAS  PubMed  Google Scholar 

  40. Walley AJ, Chavanas S, Moffatt MF et al (2001) Gene polymorphism in Netherton and common atopic disease. Nat Genet 29:175–178

    Article  CAS  PubMed  Google Scholar 

  41. Hachem JP, Wagberg F, Schmuth M et al (2006) Serine protease activity and residual LEKTI expression determine phenotype in Netherton syndrome. J Investig Dermatol 126:1609–1621

    Article  CAS  PubMed  Google Scholar 

  42. Nishio Y, Noguchi E, Shibasaki M et al (2003) Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immun 4:515–517

    Article  CAS  PubMed  Google Scholar 

  43. Kusunoki T, Okafuji I, Yoshioka T et al (2005) SPINK5 polymorphism is associated with disease severity and food allergy in children with atopic dermatitis. J Allergy Clin Immunol 115:636–638

    Article  CAS  PubMed  Google Scholar 

  44. Lan CC, Tu HP, Wu CS et al (2011) Distinct SPINK5 and IL-31 polymorphisms are associated with atopic eczema and non-atopic hand dermatitis in Taiwanese nursing population. Exp Dermatol 20:975–979

    Article  CAS  PubMed  Google Scholar 

  45. Kato A, Fukai K, Oiso N, Hosomi N, Murakami T, Ishii M (2003) Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 148:665–669

    Article  CAS  PubMed  Google Scholar 

  46. Zhao LP, Di Z, Zhang L et al (2012) Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol 26:572–577

    Article  CAS  PubMed  Google Scholar 

  47. Fortugno P, Furio L, Teson M et al (2012) The 420K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Hum Mol Genet 21:4187–4200

    Article  CAS  PubMed  Google Scholar 

  48. Briot A, Deraison C, Lacroix M et al (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206:1135–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pellerin L, Henry J, Hsu CY et al (2012) Defects of filaggrin-like proteins in both lesional and nonlesional atopic skin. J Allergy Clin Immunol 131:1094–1102

    Article  CAS  Google Scholar 

  50. Makino T, Mizawa M, Yamakoshi T, Takaishi M, Shimizu T (2014) Expression of filaggrin-2 protein in the epidermis of human skin diseases: a comparative analysis with filaggrin. Biochem Biophys Res Commun 449:100–106

    Article  CAS  PubMed  Google Scholar 

  51. Wu Z, Hansmann B, Meyer-Hoffert U, Glaser R, Schroder JM (2009) Molecular identification and expression analysis of filaggrin-2, a member of the S100 fused-type protein family. PLoS One 4:e5227

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Margolis DJ, Gupta J, Apter AJ et al (2014) Filaggrin-2 variation is associated with more persistent atopic dermatitis in African American subjects. J Allergy Clin Immunol 133:784–789

    Article  CAS  PubMed  Google Scholar 

  53. Marenholz I, Rivera VA, Esparza-Gordillo J et al (2011) Association screening in the Epidermal Differentiation Complex (EDC) identifies an SPRR3 repeat number variant as a risk factor for eczema. J Investig Dermatol 131:1644–1649

    Article  CAS  PubMed  Google Scholar 

  54. Kelsell DP, Byrne C (2011) SNPing at the epidermal barrier. J Investig Dermatol 131:1593–1595

    Article  CAS  PubMed  Google Scholar 

  55. Saunders SP, Goh CS, Brown SJ et al (2013) Tmem79/Matt is the matted mouse gene and is a predisposing gene for atopic dermatitis in human subjects. J Allergy Clin Immunol 132:1121–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sasaki T, Shiohama A, Kubo A et al (2013) A homozygous nonsense mutation in the gene for Tmem79, a component for the lamellar granule secretory system, produces spontaneous eczema in an experimental model of atopic dermatitis. J Allergy Clin Immunol 132:1111–1120

    Article  CAS  PubMed  Google Scholar 

  57. De Benedetto A, Slifka MK, Rafaels NM et al (2011) Reductions in claudin-1 may enhance susceptibility to herpes simplex virus 1 infections in atopic dermatitis. J Allergy Clin Immunol 128:242–246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Mu Z, Zhao Y, Liu X, Chang C, Zhang J (2012) Molecular biology of atopic dermatitis. Clin Rev Allergy Immunol 47:193–218

    Article  CAS  Google Scholar 

  59. Eyerich K, Novak N (2013) Immunology of atopic eczema: overcoming the Th1/Th2 paradigm. Allergy 68:974–982

    Article  CAS  PubMed  Google Scholar 

  60. Wollenberg A, Rawer HC, Schauber J (2008) Innate immunity in atopic dermatitis. Clin Rev Allergy Immunol 41:272–281

    Article  CAS  Google Scholar 

  61. Potaczek DP, Nastalek M, Okumura K, Wojas-Pelc A, Undas A, Nishiyama C (2011) An association of TLR2-16934A >T polymorphism and severity/phenotype of atopic dermatitis. J Eur Acad Dermatol Venereol 25:715–721

    Article  CAS  PubMed  Google Scholar 

  62. Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K et al (2004) The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol 113:565–567

    Article  CAS  PubMed  Google Scholar 

  63. Mrabet-Dahbi S, Dalpke AH, Niebuhr M et al (2008) The Toll-like receptor 2 R753Q mutation modifies cytokine production and Toll-like receptor expression in atopic dermatitis. J Allergy Clin Immunol 121:1013–1019

    Article  CAS  PubMed  Google Scholar 

  64. Niebuhr M, Lutat C, Sigel S, Werfel T (2009) Impaired TLR-2 expression and TLR-2-mediated cytokine secretion in macrophages from patients with atopic dermatitis. Allergy 64:1580–1587

    Article  CAS  PubMed  Google Scholar 

  65. Niebuhr M, Langnickel J, Draing C, Renz H, Kapp A, Werfel T (2008) Dysregulation of toll-like receptor-2 (TLR-2)-induced effects in monocytes from patients with atopic dermatitis: impact of the TLR-2 R753Q polymorphism. Allergy 63:728–734

    Article  CAS  PubMed  Google Scholar 

  66. Levchenko L, Izmailova OV, Shlykova OA, Kaidashev IP (2013) Polymorphism 896A/G of TLR4 gene rather than 1196C/T and 2258G/A of TLR2 gene determines severe and complicated course of atopic dermatitis in children. Tsitol Genet 47:46–53

    CAS  PubMed  Google Scholar 

  67. Miedema KG, Tissing WJ, Te Poele EM et al (2005) Polymorphisms in the TLR6 gene associated with the inverse association between childhood acute lymphoblastic leukemia and atopic disease. Leukemia 26:1203–1210

    Article  CAS  Google Scholar 

  68. Hoffjan S, Stemmler S, Parwez Q et al (2005) Evaluation of the toll-like receptor 6 Ser249Pro polymorphism in patients with asthma, atopic dermatitis and chronic obstructive pulmonary disease. BMC Med Genet 6:34

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Novak N, Yu CF, Bussmann C et al (2007) Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy 62:766–772

    Article  CAS  PubMed  Google Scholar 

  70. Weidinger S, Klopp N, Rummler L et al (2005) Association of CARD15 polymorphisms with atopy-related traits in a population-based cohort of Caucasian adults. Clin Exp Allergy 35:866–872

    Article  CAS  PubMed  Google Scholar 

  71. Macaluso F, Nothnagel M, Parwez Q et al (2007) Polymorphisms in NACHT-LRR (NLR) genes in atopic dermatitis. Exp Dermatol 16:692–698

    Article  CAS  PubMed  Google Scholar 

  72. Weidinger S, Klopp N, Rummler L et al (2005) Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J Allergy Clin Immunol 116:177–184

    Article  CAS  PubMed  Google Scholar 

  73. Prado-Montes de Oca E, Garcia-Vargas A, Lozano-Inocencio R et al (2007) Association of beta-defensin 1 single nucleotide polymorphisms with atopic dermatitis. Int Arch Allergy Immunol 142:211–218

    Article  CAS  PubMed  Google Scholar 

  74. Mohamed HG, Abbas A, El-Kabarity RH, Diab HM (2009) Association of beta-defensin 1 single nucleotide polymorphism with atopic dermatitis. Egypt J Immunol 16:125–138

    PubMed  Google Scholar 

  75. Kim E, Lee JE, Namkung JH et al (2009) Single nucleotide polymorphisms and the haplotype in the DEFB1 gene are associated with atopic dermatitis in a Korean population. J Dermatol Sci 54:25–30

    Article  CAS  PubMed  Google Scholar 

  76. Montes P, de Oca E, Li W (2013) Human beta-defensin 1 (DEFB1) allele and genotype frequencies probably impact on ethnic susceptibility to atopic dermatitis. Int J Dermatol 52:115–117

    Article  CAS  Google Scholar 

  77. Kou K, Aihara M, Matsunaga T et al (2012) Association of serum interleukin-18 and other biomarkers with disease severity in adults with atopic dermatitis. Arch Dermatol Res 304:305–312

    Article  CAS  PubMed  Google Scholar 

  78. Savinko T, Matikainen S, Saarialho-Kere U et al (2012) IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Investig Dermatol 132:1392–1400

    Article  CAS  PubMed  Google Scholar 

  79. Novak N, Kruse S, Potreck J et al (2005) Single nucleotide polymorphisms of the IL18 gene are associated with atopic eczema. J Allergy Clin Immunol 115:828–833

    Article  CAS  PubMed  Google Scholar 

  80. Ibrahim GH, ElTabbakh MT, Gomaa AH, Mohamed EA (2012) Interleukin-18 gene polymorphisms in Egyptian patients with allergic diseases. Am J Rhinol Allergy 26:385–389

    Article  PubMed  Google Scholar 

  81. Jariwala SP, Abrams E, Benson A, Fodeman J, Zheng T (2011) The role of thymic stromal lymphopoietin in the immunopathogenesis of atopic dermatitis. Clin Exp Allergy 41:1515–1520

    Article  CAS  PubMed  Google Scholar 

  82. Liu YJ (2007) Thymic stromal lymphopoietin and OX40 ligand pathway in the initiation of dendritic cell-mediated allergic inflammation. J Allergy Clin Immunol 120:238–244, quiz 245-236

    Article  CAS  PubMed  Google Scholar 

  83. Hoffjan S, Beygo J, Akkad DA, Parwez Q, Petrasch-Parwez E, Epplen JT (2009) Analysis of variation in the IL7RA and IL2RA genes in atopic dermatitis. J Dermatol Sci 55:138–140

    Article  CAS  PubMed  Google Scholar 

  84. Gao PS, Rafaels NM, Mu D et al (2010) Genetic variants in thymic stromal lymphopoietin are associated with atopic dermatitis and eczema herpeticum. J Allergy Clin Immunol 125:1403–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Margolis DJ, Kim B, Apter AJ et al (2014) Thymic stromal lymphopoietin variation, filaggrin loss of function, and the persistence of atopic dermatitis. JAMA Dermatol 150:254–259

    Article  PubMed  PubMed Central  Google Scholar 

  86. Benson AA, Toh JA, Vernon N, Jariwala SP (2012) The role of vitamin D in the immunopathogenesis of allergic skin diseases. Allergy 67:296–301

    Article  CAS  PubMed  Google Scholar 

  87. Wang SS, Hon KL, Kong AP et al (2013) Eczema phenotypes are associated with multiple vitamin D pathway genes in Chinese children. Allergy 69:118–124

    Article  CAS  Google Scholar 

  88. He JQ, Chan-Yeung M, Becker AB et al (2003) Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immun 4:385–389

    Article  CAS  PubMed  Google Scholar 

  89. Iizuka M, Katsuyama Y, Mabuchi T et al (2002) Genetic association analysis using microsatellite markers in atopic dermatitis. Tokai J Exp Clin Med 27:51–56

    CAS  PubMed  Google Scholar 

  90. Kawashima T, Noguchi E, Arinami T et al (1998) Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. J Med Genet 35:502–504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Namkung JH, Lee JE, Kim E et al (2011) Association of polymorphisms in genes encoding IL-4, IL-13 and their receptors with atopic dermatitis in a Korean population. Exp Dermatol 20:915–919

    Article  CAS  PubMed  Google Scholar 

  92. Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA (1997) The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N Engl J Med 337:1720–1725

    Article  CAS  PubMed  Google Scholar 

  93. Oiso N, Fukai K, Ishii M (2000) Interleukin 4 receptor alpha chain polymorphism Gln551Arg is associated with adult atopic dermatitis in Japan. Br J Dermatol 142:1003–1006

    Article  CAS  PubMed  Google Scholar 

  94. Isidoro-Garcia M, Davila I, Moreno E, Laffond E, Lorente F, Gonzalez-Sarmiento R (2005) IL4RA gene polymorphism (Q576R) is associated with higher total IgE levels in Spanish patients with family history of atopy. Med Clin (Barc) 124:211–212

    Article  Google Scholar 

  95. Yamamoto N, Sugiura H, Tanaka K, Uehara M (2003) Heterogeneity of interleukin 5 genetic background in atopic dermatitis patients: significant difference between those with blood eosinophilia and normal eosinophil levels. J Dermatol Sci 33:121–126

    Article  CAS  PubMed  Google Scholar 

  96. Namkung JH, Lee JE, Kim E et al (2007) IL-5 and IL-5 receptor alpha polymorphisms are associated with atopic dermatitis in Koreans. Allergy 62:934–942

    Article  CAS  PubMed  Google Scholar 

  97. Vladich FD, Brazille SM, Stern D, Peck ML, Ghittoni R, Vercelli D (2005) IL-13 R130Q, a common variant associated with allergy and asthma, enhances effector mechanisms essential for human allergic inflammation. J Clin Invest 115:747–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Tamura K, Arakawa H, Suzuki M et al (2001) Novel dinucleotide repeat polymorphism in the first exon of the STAT-6 gene is associated with allergic diseases. Clin Exp Allergy 31:1509–1514

    Article  CAS  PubMed  Google Scholar 

  99. Tamura K, Suzuki M, Arakawa H, Tokuyama K, Morikawa A (2003) Linkage and association studies of STAT6 gene polymorphisms and allergic diseases. Int Arch Allergy Immunol 131:33–38

    Article  CAS  PubMed  Google Scholar 

  100. Schulz F, Marenholz I, Folster-Holst R et al (2007) A common haplotype of the IL-31 gene influencing gene expression is associated with nonatopic eczema. J Allergy Clin Immunol 120:1097–1102

    Article  CAS  PubMed  Google Scholar 

  101. Nagy N, Tanaka A, Techanukul T, McGrath JA (2010) Common IL-31 gene haplotype associated with non-atopic eczema is not implicated in epidermolysis bullosa pruriginosa. Acta Derm Venereol 90:631–632

    Article  PubMed  Google Scholar 

  102. Tsunemi Y, Saeki H, Nakamura K et al (2002) Interleukin-12 p40 gene (IL12B) 3′-untranslated region polymorphism is associated with susceptibility to atopic dermatitis and psoriasis vulgaris. J Dermatol Sci 30:161–166

    Article  CAS  PubMed  Google Scholar 

  103. Takahashi N, Akahoshi M, Matsuda A et al (2005) Association of the IL12RB1 promoter polymorphisms with increased risk of atopic dermatitis and other allergic phenotypes. Hum Mol Genet 14:3149–3159

    Article  CAS  PubMed  Google Scholar 

  104. Leung DY, Gao PS, Grigoryev DN et al (2011) Human atopic dermatitis complicated by eczema herpeticum is associated with abnormalities in IFN-gamma response. J Allergy Clin Immunol 127:965–973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gao PS, Leung DY, Rafaels NM et al (2012) Genetic variants in interferon regulatory factor 2 (IRF2) are associated with atopic dermatitis and eczema herpeticum. J Investig Dermatol 132:650–657

    Article  CAS  PubMed  Google Scholar 

  106. Esparza-Gordillo J, Schaarschmidt H, Liang L et al (2013) A functional IL-6 receptor (IL6R) variant is a risk factor for persistent atopic dermatitis. J Allergy Clin Immunol 132:371–377

    Article  CAS  PubMed  Google Scholar 

  107. Gharagozlou M, Farhadi E, Khaledi M et al (2013) Association between the interleukin 6 genotype at position -174 and atopic dermatitis. J Investig Allergol Clin Immunol 23:89–93

    CAS  PubMed  Google Scholar 

  108. Kayserova J, Sismova K, Zentsova-Jaresova I et al (2012) A prospective study in children with a severe form of atopic dermatitis: clinical outcome in relation to cytokine gene polymorphisms. J Investig Allergol Clin Immunol 22:92–101

    CAS  PubMed  Google Scholar 

  109. Shin HD, Park BL, Kim LH, Kim JS, Kim JW (2005) Interleukin-10 haplotype associated with total serum IgE in atopic dermatitis patients. Allergy 60:1146–1151

    Article  CAS  PubMed  Google Scholar 

  110. Namkung JH, Lee JE, Kim E et al (2011) An association between IL-9 and IL-9 receptor gene polymorphisms and atopic dermatitis in a Korean population. J Dermatol Sci 62:16–21

    CAS  PubMed  Google Scholar 

  111. Niwa Y, Potaczek DP, Kanada S et al (2010) FcepsilonRIalpha gene (FCER1A) promoter polymorphisms and total serum IgE levels in Japanese atopic dermatitis patients. Int J Immunogenet 37:139–141

    Article  CAS  PubMed  Google Scholar 

  112. Zhou J, Zhou Y, Lin LH et al (2012) Association of polymorphisms in the promoter region of FCER1A gene with atopic dermatitis, chronic uticaria, asthma, and serum immunoglobulin E levels in a Han Chinese population. Hum Immunol 73:301–305

    Article  CAS  PubMed  Google Scholar 

  113. Potaczek DP, Nastalek M, Wojas-Pelc A, Okumura K, Undas A, Nishiyama C (2010) Naturally occurring FCER1A N222K mutation - its ethnicity-dependent distribution and a role in atopic dermatitis. Mol Immunol 48:979–980

    Article  CAS  Google Scholar 

  114. Mahachie John JM, Baurecht H, Rodriguez E et al (2010) Analysis of the high affinity IgE receptor genes reveals epistatic effects of FCER1A variants on eczema risk. Allergy 65:875–882

    Article  CAS  PubMed  Google Scholar 

  115. Weidinger S, Gieger C, Rodriguez E et al (2008) Genome-wide scan on total serum IgE levels identifies FCER1A as novel susceptibility locus. PLoS Genet 4:e1000166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Manolio TA (2010) Genomewide association studies and assessment of the risk of disease. N Engl J Med 363:166–176

    Article  CAS  PubMed  Google Scholar 

  117. Trynka G, Hunt KA, Bockett NA et al (2011) Dense genotyping identifies and localizes multiple common and rare variant association signals in celiac disease. Nat Genet 43:1193–1201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM (2009) GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 106:13445–13450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Doherty TA, Soroosh P, Khorram N et al (2011) The tumor necrosis factor family member LIGHT is a target for asthmatic airway remodeling. Nat Med 17:596–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Nair M, Teng A, Bilanchone V, Agrawal A, Li B, Dai X (2006) Ovol1 regulates the growth arrest of embryonic epidermal progenitor cells and represses c-myc transcription. J Cell Biol 173:253–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hulin A, Deroanne CF, Lambert CA et al (2012) Metallothionein-dependent up-regulation of TGF-beta2 participates in the remodelling of the myxomatous mitral valve. Cardiovasc Res 93:480–489

    Article  CAS  PubMed  Google Scholar 

  122. Horikawa T, Nakayama T, Hikita I et al (2002) IFN-gamma-inducible expression of thymus and activation-regulated chemokine/CCL17 and macrophage-derived chemokine/CCL22 in epidermal keratinocytes and their roles in atopic dermatitis. Int Immunol 14:767–773

    Article  CAS  PubMed  Google Scholar 

  123. Sugawara N, Yamashita T, Ote Y, Miura M, Terada N, Kurosawa M (2002) TARC in allergic disease. Allergy 57:180–181

    Article  CAS  PubMed  Google Scholar 

  124. Fujita H (2013) The role of IL-22 and Th22 cells in human skin diseases. J Dermatol Sci 72:3–8

    Article  CAS  PubMed  Google Scholar 

  125. Tremblay F, Revett T, Huard C et al (2009) Bidirectional modulation of adipogenesis by the secreted protein Ccdc80/DRO1/URB. J Biol Chem 284:8136–8147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hsiao HW, Liu WH, Wang CJ et al (2009) Deltex1 is a target of the transcription factor NFAT that promotes T cell anergy. Immunity 31:72–83

    Article  CAS  PubMed  Google Scholar 

  127. Damm A, Lautz K, Kufer TA (2013) Roles of NLRP10 in innate and adaptive immunity. Microbes Infect 15:516–523

    Article  CAS  PubMed  Google Scholar 

  128. Jones G, Prosser DE, Kaufmann M (2014) Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 55:13–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Karadag B, Ege MJ, Scheynius A et al (2007) Environmental determinants of atopic eczema phenotypes in relation to asthma and atopic sensitization. Allergy 62:1387–1393

    Article  CAS  PubMed  Google Scholar 

  130. Purvis DJ, Thompson JM, Clark PM et al (2005) Risk factors for atopic dermatitis in New Zealand children at 3.5 years of age. Br J Dermatol 152:742–749

    Article  CAS  PubMed  Google Scholar 

  131. Miyake Y, Okubo H, Sasaki S, Tanaka K, Hirota Y (2011) Maternal dietary patterns during pregnancy and risk of wheeze and eczema in Japanese infants aged 16-24 months: the Osaka Maternal and Child Health Study. Pediatr Allergy Immunol 22:734–741

    Article  PubMed  Google Scholar 

  132. Wang Y, Liang Y, Lu Q (2008) MicroRNA epigenetic alterations: predicting biomarkers and therapeutic targets in human diseases. Clin Genet 74:307–315

    Article  CAS  PubMed  Google Scholar 

  133. Martino D, Kesper DA, Amarasekera M, Harb H, Renz H, Prescott S (2014) Epigenetics in immune development and in allergic and autoimmune diseases. J Reprod Immunol 104–105:43–48

    Article  PubMed  CAS  Google Scholar 

  134. Prescott S, Saffery R (2011) The role of epigenetic dysregulation in the epidemic of allergic disease. Clin Epigenetics 2:223–232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22:329–341

    Article  CAS  PubMed  Google Scholar 

  136. Liu J, Lluis A, Illi S et al (2010) T regulatory cells in cord blood--FOXP3 demethylation as reliable quantitative marker. PLoS One 5:e13267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Polansky JK, Kretschmer K, Freyer J et al (2008) DNA methylation controls Foxp3 gene expression. Eur J Immunol 38:1654–1663

    Article  CAS  PubMed  Google Scholar 

  138. Leung PS, Shu SA, Chang C (2014) The changing geoepidemiology of food allergies. Clin Rev Allergy Immunol 46:169–179

    Article  CAS  PubMed  Google Scholar 

  139. Ho MH, Wong WH, Chang C (2014) Clinical spectrum of food allergies: a comprehensive review. Clin Rev Allergy Immunol 46:225–240

    Article  CAS  PubMed  Google Scholar 

  140. Shu SA, Chang C, Leung PS (2014) Common methodologies in the evaluation of food allergy: pitfalls and prospects of food allergy prevalence studies. Clin Rev Allergy Immunol 46:198–210

    Article  CAS  PubMed  Google Scholar 

  141. Liang Y, Wang P, Zhao M et al (2012) Demethylation of the FCER1G promoter leads to FcepsilonRI overexpression on monocytes of patients with atopic dermatitis. Allergy 67:424–430

    Article  CAS  PubMed  Google Scholar 

  142. White GP, Watt PM, Holt BJ, Holt PG (2002) Differential patterns of methylation of the IFN-gamma promoter at CpG and non-CpG sites underlie differences in IFN-gamma gene expression between human neonatal and adult CD45RO- T cells. J Immunol 168:2820–2827

    Article  CAS  PubMed  Google Scholar 

  143. Kaminuma O, Kitamura F, Miyatake S et al (2009) T-box 21 transcription factor is responsible for distorted T(H)2 differentiation in human peripheral CD4+ T cells. J Allergy Clin Immunol 123:813–823

    Article  CAS  PubMed  Google Scholar 

  144. Brand S, Teich R, Dicke T et al (2011) Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol 128:618–625

    Article  CAS  PubMed  Google Scholar 

  145. Ly NP, Litonjua A, Gold DR, Celedon JC (2011) Gut microbiota, probiotics, and vitamin D: interrelated exposures influencing allergy, asthma, and obesity? J Allergy Clin Immunol 127:1087–1094, quiz 1095-1086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Cao S, Feehley TJ, Nagler CR (2014) The role of commensal bacteria in the regulation of sensitization to food allergens. FEBS Lett

  147. Amberbir A, Medhin G, Erku W et al (2011) Effects of Helicobacter pylori, geohelminth infection and selected commensal bacteria on the risk of allergic disease and sensitization in 3-year-old Ethiopian children. Clin Exp Allergy 41:1422–1430

    Article  CAS  PubMed  Google Scholar 

  148. Kummeling I, Stelma FF, Dagnelie PC et al (2007) Early life exposure to antibiotics and the subsequent development of eczema, wheeze, and allergic sensitization in the first 2 years of life: the KOALA Birth Cohort Study. Pediatrics 119:e225–e231

    Article  PubMed  Google Scholar 

  149. Ochoa-Reparaz J, Mielcarz DW, Haque-Begum S, Kasper LH (2010) Induction of a regulatory B cell population in experimental allergic encephalomyelitis by alteration of the gut commensal microflora. Gut Microbes 1:103–108

    Article  PubMed  PubMed Central  Google Scholar 

  150. Hill DA, Siracusa MC, Abt MC et al (2012) Commensal bacteria-derived signals regulate basophil hematopoiesis and allergic inflammation. Nat Med 18:538–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Perera F, Tang WY, Herbstman J et al (2009) Relation of DNA methylation of 5′-CpG island of ACSL3 to transplacental exposure to airborne polycyclic aromatic hydrocarbons and childhood asthma. PLoS One 4:e4488

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Tang WY, Levin L, Talaska G et al (2012) Maternal exposure to polycyclic aromatic hydrocarbons and 5′-CpG methylation of interferon-gamma in cord white blood cells. Environ Health Perspect 120:1195–1200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Nurmatov U, Devereux G, Sheikh A (2011) Nutrients and foods for the primary prevention of asthma and allergy: systematic review and meta-analysis. J Allergy Clin Immunol 127:724–733

    Article  PubMed  Google Scholar 

  154. Joseph CL, Ownby DR, Havstad SL et al (2011) Early complementary feeding and risk of food sensitization in a birth cohort. J Allergy Clin Immunol 127:1203–1210

    Article  PubMed  PubMed Central  Google Scholar 

  155. Hollingsworth JW, Maruoka S, Boon K et al (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118:3462–3469

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Brown SB, Reeves KW, Bertone-Johnson ER (2014) Maternal folate exposure in pregnancy and childhood asthma and allergy: a systematic review. Nutr Rev 72:55–64

    Article  PubMed  Google Scholar 

  157. Bekkers MB, Elstgeest LE, Scholtens S et al (2012) Maternal use of folic acid supplements during pregnancy, and childhood respiratory health and atopy. Eur Respir J 39:1468–1474

    Article  CAS  PubMed  Google Scholar 

  158. Matsui EC, Matsui W (2009) Higher serum folate levels are associated with a lower risk of atopy and wheeze. J Allergy Clin Immunol 123:1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Whitrow MJ, Moore VM, Rumbold AR, Davies MJ (2009) Effect of supplemental folic acid in pregnancy on childhood asthma: a prospective birth cohort study. Am J Epidemiol 170:1486–1493

    Article  PubMed  Google Scholar 

  160. Husemoen LL, Toft U, Fenger M, Jorgensen T, Johansen N, Linneberg A (2006) The association between atopy and factors influencing folate metabolism: is low folate status causally related to the development of atopy? Int J Epidemiol 35:954–961

    Article  PubMed  Google Scholar 

  161. Kiefte-de Jong JC, Timmermans S, Jaddoe VW et al (2012) High circulating folate and vitamin B-12 concentrations in women during pregnancy are associated with increased prevalence of atopic dermatitis in their offspring. J Nutr 142:731–738

    Article  CAS  PubMed  Google Scholar 

  162. Thuesen BH, Husemoen LL, Ovesen L et al (2010) Atopy, asthma, and lung function in relation to folate and vitamin B(12) in adults. Allergy 65:1446–1454

    Article  CAS  PubMed  Google Scholar 

  163. Sugiura H, Ebise H, Tazawa T et al (2005) Large-scale DNA microarray analysis of atopic skin lesions shows overexpression of an epidermal differentiation gene cluster in the alternative pathway and lack of protective gene expression in the cornified envelope. Br J Dermatol 152:146–149

    Article  CAS  PubMed  Google Scholar 

  164. Jarzab J, Filipowska B, Zebracka J et al (2010) Locus 1q21 Gene expression changes in atopic dermatitis skin lesions: deregulation of small proline-rich region 1A. Int Arch Allergy Immunol 151:28–37

    Article  CAS  PubMed  Google Scholar 

  165. Bin L, Howell MD, Kim BE, Streib JE, Hall CF, Leung DY (2011) Specificity protein 1 is pivotal in the skin’s antiviral response. J Allergy Clin Immunol 127:430–438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Soumelis V, Reche PA, Kanzler H et al (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3:673–680

    Article  CAS  PubMed  Google Scholar 

  167. Luo Y, Zhou B, Zhao M, Tang J, Lu Q (2014) Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin Exp Dermatol 39:48–53

    Article  CAS  PubMed  Google Scholar 

  168. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  169. Makeyev EV, Maniatis T (2008) Multilevel regulation of gene expression by microRNAs. Science 319:1789–1790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Djuranovic S, Nahvi A, Green R (2011) A parsimonious model for gene regulation by miRNAs. Science 331:550–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Janssen HL, Reesink HW, Lawitz EJ et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694

    Article  CAS  PubMed  Google Scholar 

  172. Sonkoly E, Wei T, Janson PC et al (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2:e610

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Sonkoly E, Janson P, Majuri ML et al (2010) MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 126:581–589

    Article  CAS  PubMed  Google Scholar 

  174. Bieber T (2012) Atopic dermatitis 2.0: from the clinical phenotype to the molecular taxonomy and stratified medicine. Allergy 67:1475–1482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Natural Science Foundation of China (Nos. 30800993, 81371742, and 81573052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qianjin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Chang, C. & Lu, Q. The Genetics and Epigenetics of Atopic Dermatitis—Filaggrin and Other Polymorphisms. Clinic Rev Allerg Immunol 51, 315–328 (2016). https://doi.org/10.1007/s12016-015-8508-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-015-8508-5

Keywords

Navigation