Skip to main content

Advertisement

Log in

Molecular Biology of Atopic Dermatitis

  • Published:
Clinical Reviews in Allergy & Immunology Aims and scope Submit manuscript

Abstract

Atopic dermatitis (AD) is a chronic inflammatory skin disease with specific genetic and immunological mechanisms. The rapid development of new techniques in molecular biology had ushered in new discoveries on the role of cytokines, chemokines, and immune cells in the pathogenesis of AD. New polymorphisms of AD are continually being reported in different populations. The physical and immunological barrier of normal intact skin is an important part of the innate immune system that protects the host against microbials and allergens that are associated with AD. Defects in the filaggrin gene FLG may play a role in facilitating exposure to allergens and microbial pathogens, which may induce Th2 polarization. Meanwhile, Th22 cells also play roles in skin barrier impairment through IL-22, and AD is often considered to be a Th2/Th22-dominant allergic disease. Mast cells and eosinophils are also involved in the inflammation via Th2 cytokines. Release of pruritogenic substances by mast cells induces scratching that further disrupts the skin barrier. Th1 and Th17 cells are mainly involved in chronic phase of AD. Keratinocytes also produce proinflammatory cytokines such as thymic stromal lymphopoietin (TSLP), which can further affect Th cells balance. The immunological characteristics of AD may differ for various endotypes and phenotypes. Due to the heterogeneity of the disease, and the redundancies of these mechanisms, our knowledge of the pathophysiology of the disease is still incomplete, which is reflected by the absence of a cure for the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Kapoor R, Menon C, Hoffstad O, Bilker W, Leclerc P, Margolis DJ (2008) The prevalence of atopic triad in children with physician-confirmed atopic dermatitis. J Am Acad Dermatol 58:68–73

    PubMed  Google Scholar 

  2. Diepgen TL, Fartasch M (1992) Recent epidemiological and genetic studies in atopic dermatitis. Acta Derm Venereol Suppl (Stockh) 176:13–18

    CAS  Google Scholar 

  3. Dold S, Wjst M, von Mutius E, Reitmeir P, Stiepel E (1992) Genetic risk for asthma, allergic rhinitis, and atopic dermatitis. Arch Dis Child 67:1018–1022

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Larsen FS, Holm NV, Henningsen K (1986) Atopic dermatitis. A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 15:487–494

    CAS  PubMed  Google Scholar 

  5. Schultz Larsen F (1993) Atopic dermatitis: a genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol 28:719–723

    CAS  PubMed  Google Scholar 

  6. Thomsen SF, Ulrik CS, Kyvik KO, Hjelmborg J, Skadhauge LR, Steffensen I, Backer V (2007) Importance of genetic factors in the etiology of atopic dermatitis: a twin study. Allergy Asthma Proc 28:535–539

    PubMed  Google Scholar 

  7. Larsen FS, Hanifin JM (2002) Epidemiology of atopic dermatitis. Immunol Allergy Clin N Am 22:1–24

    Google Scholar 

  8. DaVeiga SP (2012) Epidemiology of atopic dermatitis: a review. Allergy Asthma Proc 33:227–234

    PubMed  Google Scholar 

  9. Hoffjan S, Epplen JT (2005) The genetics of atopic dermatitis: recent findings and future options. J Mol Med (Berl) 83:682–692

    CAS  Google Scholar 

  10. Bieber T (2008) Atopic dermatitis. N Engl J Med 358:1483–1494

    CAS  PubMed  Google Scholar 

  11. Boguniewicz M, Leung DY (2010) Recent insights into atopic dermatitis and implications for management of infectious complications. J Allergy Clin Immunol 125:4–13, quiz 14-15

    PubMed  PubMed Central  Google Scholar 

  12. Lee YA, Wahn U, Kehrt R, Tarani L, Businco L, Gustafsson D, Andersson F, Oranje AP, Wolkertstorfer A, Berg A, Hoffmann U, Kuster W, Wienker T, Ruschendorf F, Reis A (2000) A major susceptibility locus for atopic dermatitis maps to chromosome 3q21. Nat Genet 26:470–473

    CAS  PubMed  Google Scholar 

  13. Cookson WO, Ubhi B, Lawrence R, Abecasis GR, Walley AJ, Cox HE, Coleman R, Leaves NI, Trembath RC, Moffatt MF, Harper JI (2001) Genetic linkage of childhood atopic dermatitis to psoriasis susceptibility loci. Nat Genet 27:372–373

    CAS  PubMed  Google Scholar 

  14. Bradley M, Soderhall C, Luthman H, Wahlgren CF, Kockum I, Nordenskjold M (2002) Susceptibility loci for atopic dermatitis on chromosomes 3, 13, 15, 17 and 18 in a Swedish population. Hum Mol Genet 11:1539–1548

    CAS  PubMed  Google Scholar 

  15. Haagerup A, Bjerke T, Schiotz PO, Dahl R, Binderup HG, Tan Q, Kruse TA (2004) Atopic dermatitis—a total genome-scan for susceptibility genes. Acta Derm Venereol 84:346–352

    CAS  PubMed  Google Scholar 

  16. Kurz T, Altmueller J, Strauch K, Ruschendorf F, Heinzmann A, Moffatt MF, Cookson WO, Inacio F, Nurnberg P, Stassen HH, Deichmann KA (2005) A genome-wide screen on the genetics of atopy in a multiethnic European population reveals a major atopy locus on chromosome 3q21.3. Allergy 60:192–199

    CAS  PubMed  Google Scholar 

  17. Enomoto H, Noguchi E, Iijima S, Takahashi T, Hayakawa K, Ito M, Kano T, Aoki T, Suzuki Y, Koga M, Tamari M, Shiohara T, Otsuka F, Arinami T (2007) Single nucleotide polymorphism-based genome-wide linkage analysis in Japanese atopic dermatitis families. BMC Dermatol 7:5

    PubMed  PubMed Central  Google Scholar 

  18. Guilloud-Bataille M, Bouzigon E, Annesi-Maesano I, Bousquet J, Charpin D, Gormand F, Hochez J, Just J, Lemainque A, Le Moual N, Matran R, Neukirch F, Oryszczyn MP, Paty E, Pin I, Vervloet D, Kauffmann F, Lathrop M, Demenais F, Dizier MH (2008) Evidence for linkage of a new region (11p14) to eczema and allergic diseases. Hum Genet 122:605–614

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Christensen U, Moller-Larsen S, Nyegaard M, Haagerup A, Hedemand A, Brasch-Andersen C, Kruse TA, Corydon TJ, Deleuran M, Borglum AD (2009) Linkage of atopic dermatitis to chromosomes 4q22, 3p24 and 3q21. Hum Genet 126:549–557

    CAS  PubMed  Google Scholar 

  20. Hardas BD, Zhao X, Zhang J, Longqing X, Stoll S, Elder JT (1996) Assignment of psoriasin to human chromosomal band 1q21: coordinate overexpression of clustered genes in psoriasis. J Investig Dermatol 106:753–758

    CAS  PubMed  Google Scholar 

  21. Sun LD, Xiao FL, Li Y, Zhou WM, Tang HY, Tang XF, Zhang H, Schaarschmidt H, Zuo XB, Foelster-Holst R, He SM, Shi M, Liu Q, Lv YM, Chen XL, Zhu KJ, Guo YF, Hu DY, Li M, Zhang YH, Zhang X, Tang JP, Guo BR, Wang H, Liu Y, Zou XY, Zhou FS, Liu XY, Chen G, Ma L, Zhang SM, Jiang AP, Zheng XD, Gao XH, Li P, Tu CX, Yin XY, Han XP, Ren YQ, Song SP, Lu ZY, Zhang XL, Cui Y, Chang J, Gao M, Luo XY, Wang PG, Dai X, Su W, Li H, Shen CP, Liu SX, Feng XB, Yang CJ, Lin GS, Wang ZX, Huang JQ, Fan X, Wang Y, Bao YX, Yang S, Liu JJ, Franke A, Weidinger S, Yao ZR, Zhang XJ (2011) Genome-wide association study identifies two new susceptibility loci for atopic dermatitis in the Chinese Han population. Nat Genet 43:690–694

    CAS  PubMed  Google Scholar 

  22. Cookson WO (2001) The genetics of atopic dermatitis: strategies, candidate genes, and genome screens. J Am Acad Dermatol 45:S7–S9

    CAS  PubMed  Google Scholar 

  23. Irvine AD, McLean WH, Leung DY (2011) Filaggrin mutations associated with skin and allergic diseases. N Engl J Med 365:1315–1327

    CAS  PubMed  Google Scholar 

  24. Sybert VP, Dale BA, Holbrook KA (1985) Ichthyosis vulgaris: identification of a defect in synthesis of filaggrin correlated with an absence of keratohyaline granules. J Investig Dermatol 84:191–194

    CAS  PubMed  Google Scholar 

  25. Seguchi T, Cui CY, Kusuda S, Takahashi M, Aisu K, Tezuka T (1996) Decreased expression of filaggrin in atopic skin. Arch Dermatol Res 288:442–446

    CAS  PubMed  Google Scholar 

  26. Palmer CN, Irvine AD, Terron-Kwiatkowski A, Zhao Y, Liao H, Lee SP, Goudie DR, Sandilands A, Campbell LE, Smith FJ, O’Regan GM, Watson RM, Cecil JE, Bale SJ, Compton JG, DiGiovanna JJ, Fleckman P, Lewis-Jones S, Arseculeratne G, Sergeant A, Munro CS, El Houate B, McElreavey K, Halkjaer LB, Bisgaard H, Mukhopadhyay S, McLean WH (2006) Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat Genet 38:441–446

    CAS  PubMed  Google Scholar 

  27. Smith FJ, Irvine AD, Terron-Kwiatkowski A, Sandilands A, Campbell LE, Zhao Y, Liao H, Evans AT, Goudie DR, Lewis-Jones S, Arseculeratne G, Munro CS, Sergeant A, O’Regan G, Bale SJ, Compton JG, DiGiovanna JJ, Presland RB, Fleckman P, McLean WH (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337–342

    CAS  PubMed  Google Scholar 

  28. Weidinger S, Illig T, Baurecht H, Irvine AD, Rodriguez E, Diaz-Lacava A, Klopp N, Wagenpfeil S, Zhao Y, Liao H, Lee SP, Palmer CN, Jenneck C, Maintz L, Hagemann T, Behrendt H, Ring J, Nothen MM, McLean WH, Novak N (2006) Loss-of-function variations within the filaggrin gene predispose for atopic dermatitis with allergic sensitizations. J Allergy Clin Immunol 118:214–219

    CAS  PubMed  Google Scholar 

  29. Brown SJ, McLean WH (2009) Eczema genetics: current state of knowledge and future goals. J Investig Dermatol 129:543–552

    CAS  PubMed  Google Scholar 

  30. Scharschmidt TC, Man MQ, Hatano Y, Crumrine D, Gunathilake R, Sundberg JP, Silva KA, Mauro TM, Hupe M, Cho S, Wu Y, Celli A, Schmuth M, Feingold KR, Elias PM (2009) Filaggrin deficiency confers a paracellular barrier abnormality that reduces inflammatory thresholds to irritants and haptens. J Allergy Clin Immunol 124:496–506, 506 e491-496

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Leisten S, Oyoshi MK, Galand C, Hornick JL, Gurish MF, Geha RS (2013) Development of skin lesions in filaggrin-deficient mice is dependent on adaptive immunity. J Allergy Clin Immunol 131:1247–1250, 1250 e1241

    PubMed  Google Scholar 

  32. Mildner M, Jin J, Eckhart L, Kezic S, Gruber F, Barresi C, Stremnitzer C, Buchberger M, Mlitz V, Ballaun C, Sterniczky B, Fodinger D, Tschachler E (2010) Knockdown of filaggrin impairs diffusion barrier function and increases UV sensitivity in a human skin model. J Investig Dermatol 130:2286–2294

    CAS  PubMed  Google Scholar 

  33. Brown SJ, Kroboth K, Sandilands A, Campbell LE, Pohler E, Kezic S, Cordell HJ, McLean WH, Irvine AD (2012) Intragenic copy number variation within filaggrin contributes to the risk of atopic dermatitis with a dose-dependent effect. J Investig Dermatol 132:98–104

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bisgaard H, Simpson A, Palmer CN, Bonnelykke K, McLean I, Mukhopadhyay S, Pipper CB, Halkjaer LB, Lipworth B, Hankinson J, Woodcock A, Custovic A (2008) Gene-environment interaction in the onset of eczema in infancy: filaggrin loss-of-function mutations enhanced by neonatal cat exposure. PLoS Med 5:e131

    PubMed  PubMed Central  Google Scholar 

  35. Henderson J, Northstone K, Lee SP, Liao H, Zhao Y, Pembrey M, Mukhopadhyay S, Smith GD, Palmer CN, McLean WH, Irvine AD (2008) The burden of disease associated with filaggrin mutations: a population-based, longitudinal birth cohort study. J Allergy Clin Immunol 121(872–877):e879

    Google Scholar 

  36. Jungersted JM, Scheer H, Mempel M, Baurecht H, Cifuentes L, Hogh JK, Hellgren LI, Jemec GB, Agner T, Weidinger S (2010) Stratum corneum lipids, skin barrier function and filaggrin mutations in patients with atopic eczema. Allergy 65:911–918

    CAS  PubMed  Google Scholar 

  37. Gao PS, Rafaels NM, Hand T, Murray T, Boguniewicz M, Hata T, Schneider L, Hanifin JM, Gallo RL, Gao L, Beaty TH, Beck LA, Barnes KC, Leung DY (2009) Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol 124:507–513, 513 e501-507

    CAS  PubMed  Google Scholar 

  38. Thyssen JP, Ross-Hansen K, Johansen JD, Zachariae C, Carlsen BC, Linneberg A, Bisgaard H, Carson CG, Nielsen NH, Meldgaard M, Szecsi PB, Stender S, Menne T (2012) Filaggrin loss-of-function mutation R501X and 2282del4 carrier status is associated with fissured skin on the hands: results from a cross-sectional population study. Br J Dermatol 166:46–53

    CAS  PubMed  Google Scholar 

  39. Hu Z, Xiong Z, Xu X, Li F, Lu L, Li W, Su J, Liu Y, Liu D, Xie Z, Peng Y, Kuang Y, Wu L, Zhang J, Pan Q, Tang B, Chen X, Xia K (2012) Loss-of-function mutations in filaggrin gene associate with psoriasis vulgaris in Chinese population. Hum Genet 131:1269–1274

    CAS  PubMed  Google Scholar 

  40. Tawada C, Kanoh H, Nakamura M, Mizutani Y, Fujisawa T, Banno Y, Seishima M (2013) Interferon-gamma decreases ceramides with long-chain fatty acids: possible involvement in atopic dermatitis and psoriasis. J Investig Dermatol 134:712–718

    PubMed  Google Scholar 

  41. Loiseau N, Obata Y, Moradian S, Sano H, Yoshino S, Aburai K, Takayama K, Sakamoto K, Holleran WM, Elias PM, Uchida Y (2013) Altered sphingoid base profiles predict compromised membrane structure and permeability in atopic dermatitis. J Dermatol Sci 72:296–303

    CAS  PubMed  Google Scholar 

  42. Brown SJ, Asai Y, Cordell HJ, Campbell LE, Zhao Y, Liao H, Northstone K, Henderson J, Alizadehfar R, Ben-Shoshan M, Morgan K, Roberts G, Masthoff LJ, Pasmans SG, van den Akker PC, Wijmenga C, Hourihane JO, Palmer CN, Lack G, Clarke A, Hull PR, Irvine AD, McLean WH (2011) Loss-of-function variants in the filaggrin gene are a significant risk factor for peanut allergy. J Allergy Clin Immunol 127:661–667

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Linneberg A, Fenger RV, Husemoen LL, Thuesen BH, Skaaby T, Gonzalez-Quintela A, Vidal C, Carlsen BC, Johansen JD, Menne T, Stender S, Melgaard M, Szecsi PB, Berg ND, Thyssen JP (2013) Association between loss-of-function mutations in the filaggrin gene and self-reported food allergy and alcohol sensitivity. Int Arch Allergy Immunol 161:234–242

    CAS  PubMed  Google Scholar 

  44. Flohr C, Perkin M, Logan K, Marrs T, Radulovic S, Campbell LE, Maccallum SF, McLean WH, Lack G (2013) Atopic dermatitis and disease severity are the main risk factors for food sensitization in exclusively breastfed infants. J Investig Dermatol 134:345–350

    PubMed  PubMed Central  Google Scholar 

  45. Tan HT, Ellis JA, Koplin JJ, Matheson MC, Gurrin LC, Lowe AJ, Martin PE, Dang TD, Wake M, Tang ML, Ponsonby AL, Dharmage SC, Allen KJ (2012) Filaggrin loss-of-function mutations do not predict food allergy over and above the risk of food sensitization among infants. J Allergy Clin Immunol 130(1211–1213):e1213

    Google Scholar 

  46. De Benedetto A, Kubo A, Beck LA (2012) Skin barrier disruption: a requirement for allergen sensitization? J Investig Dermatol 132:949–963

    PubMed  PubMed Central  Google Scholar 

  47. Chavanas S, Bodemer C, Rochat A, Hamel-Teillac D, Ali M, Irvine AD, Bonafe JL, Wilkinson J, Taieb A, Barrandon Y, Harper JI, de Prost Y, Hovnanian A (2000) Mutations in SPINK5, encoding a serine protease inhibitor, cause Netherton syndrome. Nat Genet 25:141–142

    CAS  PubMed  Google Scholar 

  48. Walley AJ, Chavanas S, Moffatt MF, Esnouf RM, Ubhi B, Lawrence R, Wong K, Abecasis GR, Jones EY, Harper JI, Hovnanian A, Cookson WO (2001) Gene polymorphism in Netherton and common atopic disease. Nat Genet 29:175–178

    CAS  PubMed  Google Scholar 

  49. Nishio Y, Noguchi E, Shibasaki M, Kamioka M, Ichikawa E, Ichikawa K, Umebayashi Y, Otsuka F, Arinami T (2003) Association between polymorphisms in the SPINK5 gene and atopic dermatitis in the Japanese. Genes Immunol 4:515–517

    CAS  Google Scholar 

  50. Kato A, Fukai K, Oiso N, Hosomi N, Murakami T, Ishii M (2003) Association of SPINK5 gene polymorphisms with atopic dermatitis in the Japanese population. Br J Dermatol 148:665–669

    CAS  PubMed  Google Scholar 

  51. Lan CC, Tu HP, Wu CS, Ko YC, Yu HS, Lu YW, Li WC, Chen YC, Chen GS (2011) Distinct SPINK5 and IL-31 polymorphisms are associated with atopic eczema and non-atopic hand dermatitis in Taiwanese nursing population. Exp Dermatol 20:975–979

    CAS  PubMed  Google Scholar 

  52. Zhao LP, Di Z, Zhang L, Wang L, Ma L, Lv Y, Hong Y, Wei H, Chen HD, Gao XH (2012) Association of SPINK5 gene polymorphisms with atopic dermatitis in Northeast China. J Eur Acad Dermatol Venereol 26:572–577

    CAS  PubMed  Google Scholar 

  53. Briot A, Deraison C, Lacroix M, Bonnart C, Robin A, Besson C, Dubus P, Hovnanian A (2009) Kallikrein 5 induces atopic dermatitis-like lesions through PAR2-mediated thymic stromal lymphopoietin expression in Netherton syndrome. J Exp Med 206:1135–1147

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Fortugno P, Furio L, Teson M, Berretti M, El Hachem M, Zambruno G, Hovnanian A, D’Alessio M (2012) The 420 K LEKTI variant alters LEKTI proteolytic activation and results in protease deregulation: implications for atopic dermatitis. Hum Mol Genet 21:4187–4200

    CAS  PubMed  Google Scholar 

  55. Weidinger S, Novak N, Klopp N, Baurecht H, Wagenpfeil S, Rummler L, Ring J, Behrendt H, Illig T (2006) Lack of association between Toll-like receptor 2 and Toll-like receptor 4 polymorphisms and atopic eczema. J Allergy Clin Immunol 118:277–279

    CAS  PubMed  Google Scholar 

  56. Ahmad-Nejad P, Mrabet-Dahbi S, Breuer K, Klotz M, Werfel T, Herz U, Heeg K, Neumaier M, Renz H (2004) The toll-like receptor 2 R753Q polymorphism defines a subgroup of patients with atopic dermatitis having severe phenotype. J Allergy Clin Immunol 113:565–567

    CAS  PubMed  Google Scholar 

  57. Oh DY, Schumann RR, Hamann L, Neumann K, Worm M, Heine G (2009) Association of the toll-like receptor 2 A-16934T promoter polymorphism with severe atopic dermatitis. Allergy 64:1608–1615

    CAS  PubMed  Google Scholar 

  58. Potaczek DP, Nastalek M, Okumura K, Wojas-Pelc A, Undas A, Nishiyama C (2011) An association of TLR2-16934A > T polymorphism and severity/phenotype of atopic dermatitis. J Eur Acad Dermatol Venereol 25:715–721

    CAS  PubMed  Google Scholar 

  59. Mrabet-Dahbi S, Dalpke AH, Niebuhr M, Frey M, Draing C, Brand S, Heeg K, Werfel T, Renz H (2008) The Toll-like receptor 2 R753Q mutation modifies cytokine production and Toll-like receptor expression in atopic dermatitis. J Allergy Clin Immunol 121:1013–1019

    CAS  PubMed  Google Scholar 

  60. Niebuhr M, Langnickel J, Draing C, Renz H, Kapp A, Werfel T (2008) Dysregulation of toll-like receptor-2 (TLR-2)-induced effects in monocytes from patients with atopic dermatitis: impact of the TLR-2 R753Q polymorphism. Allergy 63:728–734

    CAS  PubMed  Google Scholar 

  61. Niebuhr M, Langnickel J, Sigel S, Werfel T (2010) Dysregulation of CD36 upon TLR-2 stimulation in monocytes from patients with atopic dermatitis and the TLR2 R753Q polymorphism. Exp Dermatol 19:e296–e298

    PubMed  Google Scholar 

  62. Salpietro C, Rigoli L, Miraglia Del Giudice M, Cuppari C, Di Bella C, Salpietro A, Maiello N, La Rosa M, Marseglia GL, Leonardi S, Briuglia S, Ciprandi G (2011) TLR2 and TLR4 gene polymorphisms and atopic dermatitis in Italian children: a multicenter study. Int J Immunopathol Pharmacol 24:33–40

    CAS  PubMed  Google Scholar 

  63. Levchenko L, Izmailova OV, Shlykova OA, Kaidashev IP (2013) Polymorphism 896A/G of TLR4 gene rather than 1196C/T and 2258G/A of TLR2 gene determines severe and complicated course of atopic dermatitis in children. Tsitol Genet 47:46–53

    CAS  PubMed  Google Scholar 

  64. Hoffjan S, Stemmler S, Parwez Q, Petrasch-Parwez E, Arinir U, Rohde G, Reinitz-Rademacher K, Schultze-Werninghaus G, Bufe A, Epplen JT (2005) Evaluation of the toll-like receptor 6 Ser249Pro polymorphism in patients with asthma, atopic dermatitis and chronic obstructive pulmonary disease. BMC Med Genet 6:34

    PubMed  PubMed Central  Google Scholar 

  65. Miedema KG, Tissing WJ, Te Poele EM, Kamps WA, Alizadeh BZ, Kerkhof M, de Jongste JC, Smit HA, de Pagter AP, Bierings M, Boezen HM, Postma DS, de Bont ES, Koppelman GH (2012) Polymorphisms in the TLR6 gene associated with the inverse association between childhood acute lymphoblastic leukemia and atopic disease. Leukemia 26:1203–1210

    CAS  PubMed  Google Scholar 

  66. Novak N, Yu CF, Bussmann C, Maintz L, Peng WM, Hart J, Hagemann T, Diaz-Lacava A, Baurecht HJ, Klopp N, Wagenpfeil S, Behrendt H, Bieber T, Ring J, Illig T, Weidinger S (2007) Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy 62:766–772

    CAS  PubMed  Google Scholar 

  67. Weidinger S, Klopp N, Rummler L, Wagenpfeil S, Baurecht HJ, Gauger A, Darsow U, Jakob T, Novak N, Schafer T, Heinrich J, Behrendt H, Wichmann HE, Ring J, Illig T (2005) Association of CARD15 polymorphisms with atopy-related traits in a population-based cohort of Caucasian adults. Clin Exp Allergy 35:866–872

    CAS  PubMed  Google Scholar 

  68. Macaluso F, Nothnagel M, Parwez Q, Petrasch-Parwez E, Bechara FG, Epplen JT, Hoffjan S (2007) Polymorphisms in NACHT-LRR (NLR) genes in atopic dermatitis. Exp Dermatol 16:692–698

    CAS  PubMed  Google Scholar 

  69. Weidinger S, Klopp N, Rummler L, Wagenpfeil S, Novak N, Baurecht HJ, Groer W, Darsow U, Heinrich J, Gauger A, Schafer T, Jakob T, Behrendt H, Wichmann HE, Ring J, Illig T (2005) Association of NOD1 polymorphisms with atopic eczema and related phenotypes. J Allergy Clin Immunol 116:177–184

    CAS  PubMed  Google Scholar 

  70. Prado-Montes de Oca E, Garcia-Vargas A, Lozano-Inocencio R, Gallegos-Arreola MP, Sandoval-Ramirez L, Davalos-Rodriguez NO, Figuera LE (2007) Association of beta-defensin 1 single nucleotide polymorphisms with atopic dermatitis. Int Arch Allergy Immunol 142:211–218

    CAS  PubMed  Google Scholar 

  71. Mohamed HG, Abbas A, El-Kabarity RH, Diab HM (2009) Association of beta-defensin 1 single nucleotide polymorphism with atopic dermatitis. Egypt J Immunol 16:125–138

    PubMed  Google Scholar 

  72. Kim E, Lee JE, Namkung JH, Kim PS, Kim S, Shin ES, Cho EY, Yang JM (2009) Single nucleotide polymorphisms and the haplotype in the DEFB1 gene are associated with atopic dermatitis in a Korean population. J Dermatol Sci 54:25–30

    CAS  PubMed  Google Scholar 

  73. Segat L, Guimaraes RL, Brandao LA, Rocha CR, Zanin V, Trevisiol C, de Lima Filho JL, Crovella S (2010) Beta defensin-1 gene (DEFB1) polymorphisms are not associated with atopic dermatitis in children and adolescents from northeast Brazil (Recife, Pernambuco). Int J Dermatol 49:653–657

    CAS  PubMed  Google Scholar 

  74. Sengler C, Haider A, Sommerfeld C, Lau S, Baldini M, Martinez F, Wahn U, Nickel R (2003) Evaluation of the CD14 C-159T polymorphism in the German Multicenter Allergy Study cohort. Clin Exp Allergy 33:166–169

    CAS  PubMed  Google Scholar 

  75. Buckova D, Holla LI, Schuller M, Znojil V, Vacha J (2003) Two CD14 promoter polymorphisms and atopic phenotypes in Czech patients with IgE-mediated allergy. Allergy 58:1023–1026

    CAS  PubMed  Google Scholar 

  76. Leung TF, Tang NL, Sung YM, Li AM, Wong GW, Chan IH, Lam CW (2003) The C-159T polymorphism in the CD14 promoter is associated with serum total IgE concentration in atopic Chinese children. Pediatr Allergy Immunol 14:255–260

    PubMed  Google Scholar 

  77. Liang XH, Cheung W, Heng CK, Liu JJ, Li CW, Lim B, de Wang Y (2006) CD14 promoter polymorphisms have no functional significance and are not associated with atopic phenotypes. Pharmacogenet Genomics 16:229–236

    PubMed  Google Scholar 

  78. Murthy A, Shao YW, Narala SR, Molyneux SD, Zuniga-Pflucker JC, Khokha R (2012) Notch activation by the metalloproteinase ADAM17 regulates myeloproliferation and atopic barrier immunity by suppressing epithelial cytokine synthesis. Immunity 36:105–119

    CAS  PubMed  Google Scholar 

  79. Bird L (2012) ADAM17—gatekeeper of the skin barrier. Nat Rev Immunol 12:154

    CAS  PubMed  Google Scholar 

  80. Groot AJ, Cobzaru C, Weber S, Saftig P, Blobel CP, Kopan R, Vooijs M, Franzke CW (2013) Epidermal ADAM17 is dispensable for notch activation. J Investig Dermatol 133:2286–2288

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Sen GL, Boxer LD, Webster DE, Bussat RT, Qu K, Zarnegar BJ, Johnston D, Siprashvili Z, Khavari PA (2012) ZNF750 is a p63 target gene that induces KLF4 to drive terminal epidermal differentiation. Dev Cell 22:669–677

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Cohen I, Birnbaum RY, Leibson K, Taube R, Sivan S, Birk OS (2012) ZNF750 is expressed in differentiated keratinocytes and regulates epidermal late differentiation genes. PLoS One 7:e42628

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Birnbaum RY, Zvulunov A, Hallel-Halevy D, Cagnano E, Finer G, Ofir R, Geiger D, Silberstein E, Feferman Y, Birk OS (2006) Seborrhea-like dermatitis with psoriasiform elements caused by a mutation in ZNF750, encoding a putative C2H2 zinc finger protein. Nat Genet 38:749–751

    CAS  PubMed  Google Scholar 

  84. Kawashima T, Noguchi E, Arinami T, Yamakawa-Kobayashi K, Nakagawa H, Otsuka F, Hamaguchi H (1998) Linkage and association of an interleukin 4 gene polymorphism with atopic dermatitis in Japanese families. J Med Genet 35:502–504

    CAS  PubMed  PubMed Central  Google Scholar 

  85. He JQ, Chan-Yeung M, Becker AB, Dimich-Ward H, Ferguson AC, Manfreda J, Watson WT, Sandford AJ (2003) Genetic variants of the IL13 and IL4 genes and atopic diseases in at-risk children. Genes Immunol 4:385–389

    CAS  Google Scholar 

  86. Hershey GK, Friedrich MF, Esswein LA, Thomas ML, Chatila TA (1997) The association of atopy with a gain-of-function mutation in the alpha subunit of the interleukin-4 receptor. N Engl J Med 337:1720–1725

    CAS  PubMed  Google Scholar 

  87. Oiso N, Fukai K, Ishii M (2000) Interleukin 4 receptor alpha chain polymorphism Gln551Arg is associated with adult atopic dermatitis in Japan. Br J Dermatol 142:1003–1006

    CAS  PubMed  Google Scholar 

  88. Namkung JH, Lee JE, Kim E, Kim HJ, Seo EY, Jang HY, Shin ES, Cho EY, Yang JM (2011) Association of polymorphisms in genes encoding IL-4, IL-13 and their receptors with atopic dermatitis in a Korean population. Exp Dermatol 20:915–919

    CAS  PubMed  Google Scholar 

  89. Isidoro-Garcia M, Davila I, Moreno E, Laffond E, Lorente F, Gonzalez-Sarmiento R (2005) IL4RA gene polymorphism (Q576R) is associated with higher total IgE levels in Spanish patients with family history of atopy. Med Clin (Barc) 124:211–212

    Google Scholar 

  90. Paternoster L, Standl M, Chen CM, Ramasamy A, Bonnelykke K, Duijts L, Ferreira MA, Alves AC, Thyssen JP, Albrecht E, Baurecht H, Feenstra B, Sleiman PM, Hysi P, Warrington NM, Curjuric I, Myhre R, Curtin JA, Groen-Blokhuis MM, Kerkhof M, Saaf A, Franke A, Ellinghaus D, Folster-Holst R, Dermitzakis E, Montgomery SB, Prokisch H, Heim K, Hartikainen AL, Pouta A, Pekkanen J, Blakemore AI, Buxton JL, Kaakinen M, Duffy DL, Madden PA, Heath AC, Montgomery GW, Thompson PJ, Matheson MC, Le Souef P, St Pourcain B, Smith GD, Henderson J, Kemp JP, Timpson NJ, Deloukas P, Ring SM, Wichmann HE, Muller-Nurasyid M, Novak N, Klopp N, Rodriguez E, McArdle W, Linneberg A, Menne T, Nohr EA, Hofman A, Uitterlinden AG, van Duijn CM, Rivadeneira F, de Jongste JC, van der Valk RJ, Wjst M, Jogi R, Geller F, Boyd HA, Murray JC, Kim C, Mentch F, March M, Mangino M, Spector TD, Bataille V, Pennell CE, Holt PG, Sly P, Tiesler CM, Thiering E, Illig T, Imboden M, Nystad W, Simpson A, Hottenga JJ, Postma D, Koppelman GH, Smit HA, Soderhall C, Chawes B, Kreiner-Moller E, Bisgaard H, Melen E, Boomsma DI, Custovic A, Jacobsson B, Probst-Hensch NM, Palmer LJ, Glass D, Hakonarson H, Melbye M, Jarvis DL, Jaddoe VW, Gieger C, Strachan DP, Martin NG, Jarvelin MR, Heinrich J, Evans DM, Weidinger S (2012) Meta-analysis of genome-wide association studies identifies three new risk loci for atopic dermatitis. Nat Genet 44:187–192

    CAS  Google Scholar 

  91. Tamura K, Arakawa H, Suzuki M, Kobayashi Y, Mochizuki H, Kato M, Tokuyama K, Morikawa A (2001) Novel dinucleotide repeat polymorphism in the first exon of the STAT-6 gene is associated with allergic diseases. Clin Exp Allergy 31:1509–1514

    CAS  PubMed  Google Scholar 

  92. Tamura K, Suzuki M, Arakawa H, Tokuyama K, Morikawa A (2003) Linkage and association studies of STAT6 gene polymorphisms and allergic diseases. Int Arch Allergy Immunol 131:33–38

    CAS  PubMed  Google Scholar 

  93. Alase A, Seltmann J, Werfel T, Wittmann M (2012) Interleukin-33 modulates the expression of human beta-defensin 2 in human primary keratinocytes and may influence the susceptibility to bacterial superinfection in acute atopic dermatitis. Br J Dermatol 167:1386–1389

    CAS  PubMed  Google Scholar 

  94. Kou K, Aihara M, Matsunaga T, Chen H, Taguri M, Morita S, Fujita H, Yamaguchi Y, Kambara T, Ikezawa Z (2012) Association of serum interleukin-18 and other biomarkers with disease severity in adults with atopic dermatitis. Arch Dermatol Res 304:305–312

    CAS  PubMed  Google Scholar 

  95. Hoffjan S, Beygo J, Akkad DA, Parwez Q, Petrasch-Parwez E, Epplen JT (2009) Analysis of variation in the IL7RA and IL2RA genes in atopic dermatitis. J Dermatol Sci 55:138–140

    CAS  PubMed  Google Scholar 

  96. Namkung JH, Lee JE, Kim E, Cho HJ, Kim S, Shin ES, Cho EY, Yang JM (2007) IL-5 and IL-5 receptor alpha polymorphisms are associated with atopic dermatitis in Koreans. Allergy 62:934–942

    CAS  PubMed  Google Scholar 

  97. Gharagozlou M, Farhadi E, Khaledi M, Behniafard N, Sotoudeh S, Salari R, Darabi B, Fathi SM, Mahmoudi M, Aghamohammadi A, Amirzargar AA, Rezaei N (2013) Association between the interleukin 6 genotype at position -174 and atopic dermatitis. J Investig Allergol Clin Immunol 23:89–93

    CAS  PubMed  Google Scholar 

  98. Namkung JH, Lee JE, Kim E, Park GT, Yang HS, Jang HY, Shin ES, Cho EY, Yang JM (2011) An association between IL-9 and IL-9 receptor gene polymorphisms and atopic dermatitis in a Korean population. J Dermatol Sci 62:16–21

    CAS  PubMed  Google Scholar 

  99. Raedler D, Illi S, Pinto LA, von Mutius E, Illig T, Kabesch M, Schaub B (2013) IL10 polymorphisms influence neonatal immune responses, atopic dermatitis, and wheeze at age 3 years. J Allergy Clin Immunol 131:789–796

    CAS  PubMed  Google Scholar 

  100. Hussein PY, Zahran F, Ashour Wahba A, Ahmad AS, Ibrahiem MM, Shalaby SM, El Tarhouny SA, El Sherbiny HM, Bakr N (2010) Interleukin 10 receptor alpha subunit (IL-10RA) gene polymorphism and IL-10 serum levels in Egyptian atopic patients. J Investig Allergol Clin Immunol 20:20–26

    CAS  PubMed  Google Scholar 

  101. Namkung JH, Lee JE, Kim E, Kim S, Shin ES, Cho EY, Yang JM (2010) Association of single nucleotide polymorphisms in the IL-12 (IL-12A and B) and IL-12 receptor (IL-12Rbeta1 and beta2) genes and gene-gene interactions with atopic dermatitis in Koreans. J Dermatol Sci 57:199–206

    CAS  PubMed  Google Scholar 

  102. Arshad SH, Karmaus W, Kurukulaaratchy R, Sadeghnejad A, Huebner M, Ewart S (2008) Polymorphisms in the interleukin 13 and GATA binding protein 3 genes and the development of eczema during childhood. Br J Dermatol 158:1315–1322

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Novak N, Kruse S, Potreck J, Maintz L, Jenneck C, Weidinger S, Fimmers R, Bieber T (2005) Single nucleotide polymorphisms of the IL18 gene are associated with atopic eczema. J Allergy Clin Immunol 115:828–833

    CAS  PubMed  Google Scholar 

  104. Hong CH, Yu HS, Ko YC, Chang WC, Chuang HY, Chen GS, Lee CH (2012) Functional regulation of interleukin-31 production by its genetic polymorphism in patients with extrinsic atopic dermatitis. Acta Derm Venereol 92:430–432

    CAS  PubMed  Google Scholar 

  105. Esparza-Gordillo J, Weidinger S, Folster-Holst R, Bauerfeind A, Ruschendorf F, Patone G, Rohde K, Marenholz I, Schulz F, Kerscher T, Hubner N, Wahn U, Schreiber S, Franke A, Vogler R, Heath S, Baurecht H, Novak N, Rodriguez E, Illig T, Lee-Kirsch MA, Ciechanowicz A, Kurek M, Piskackova T, Macek M, Lee YA, Ruether A (2009) A common variant on chromosome 11q13 is associated with atopic dermatitis. Nat Genet 41:596–601

    CAS  PubMed  Google Scholar 

  106. Hughes-Davies L, Huntsman D, Ruas M, Fuks F, Bye J, Chin SF, Milner J, Brown LA, Hsu F, Gilks B, Nielsen T, Schulzer M, Chia S, Ragaz J, Cahn A, Linger L, Ozdag H, Cattaneo E, Jordanova ES, Schuuring E, Yu DS, Venkitaraman A, Ponder B, Doherty A, Aparicio S, Bentley D, Theillet C, Ponting CP, Caldas C, Kouzarides T (2003) EMSY links the BRCA2 pathway to sporadic breast and ovarian cancer. Cell 115:523–535

    CAS  PubMed  Google Scholar 

  107. Chen CC, Yang YH, Lin YT, Hsieh SL, Chiang BL (2004) Soluble decoy receptor 3: increased levels in atopic patients. J Allergy Clin Immunol 114:195–197

    PubMed  Google Scholar 

  108. Moffatt MF, Gut IG, Demenais F, Strachan DP, Bouzigon E, Heath S, von Mutius E, Farrall M, Lathrop M, Cookson WO (2010) A large-scale, consortium-based genome wide association study of asthma. N Engl J Med 363:1211–1221

    CAS  PubMed  Google Scholar 

  109. Torgerson DG, Ampleford EJ, Chiu GY, Gauderman WJ, Gignoux CR, Graves PE, Himes BE, Levin AM, Mathias RA, Hancock DB, Baurley JW, Eng C, Stern DA, Celedon JC, Rafaels N, Capurso D, Conti DV, Roth LA, Soto-Quiros M, Togias A, Li X, Myers RA, Romieu I, Van Den Berg DJ, Hu D, Hansel NN, Hernandez RD, Israel E, Salam MT, Galanter J, Avila PC, Avila L, Rodriquez-Santana JR, Chapela R, Rodriguez-Cintron W, Diette GB, Adkinson NF, Abel RA, Ross KD, Shi M, Faruque MU, Dunston GM, Watson HR, Mantese VJ, Ezurum SC, Liang L, Ruczinski I, Ford JG, Huntsman S, Chung KF, Vora H, Calhoun WJ, Castro M, Sienra-Monge JJ, del Rio-Navarro B, Deichmann KA, Heinzmann A, Wenzel SE, Busse WW, Gern JE, Lemanske RF Jr, Beaty TH, Bleecker ER, Raby BA, Meyers DA, London SJ, Gilliland FD, Burchard EG, Martinez FD, Weiss ST, Williams LK, Barnes KC, Ober C, Nicolae DL (2011) Meta-analysis of genome-wide association studies of asthma in ethnically diverse North American populations. Nat Genet 43:887–892

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Hirota T, Takahashi A, Kubo M, Tsunoda T, Tomita K, Doi S, Fujita K, Miyatake A, Enomoto T, Miyagawa T, Adachi M, Tanaka H, Niimi A, Matsumoto H, Ito I, Masuko H, Sakamoto T, Hizawa N, Taniguchi M, Lima JJ, Irvin CG, Peters SP, Himes BE, Litonjua AA, Tantisira KG, Weiss ST, Kamatani N, Nakamura Y, Tamari M (2011) Genome-wide association study identifies three new susceptibility loci for adult asthma in the Japanese population. Nat Genet 43:893–896

    CAS  PubMed  Google Scholar 

  111. Ferreira MA, Matheson MC, Duffy DL, Marks GB, Hui J, Le Souef P, Danoy P, Baltic S, Nyholt DR, Jenkins M, Hayden C, Willemsen G, Ang W, Kuokkanen M, Beilby J, Cheah F, de Geus EJ, Ramasamy A, Vedantam S, Salomaa V, Madden PA, Heath AC, Hopper JL, Visscher PM, Musk B, Leeder SR, Jarvelin MR, Pennell C, Boomsma DI, Hirschhorn JN, Walters H, Martin NG, James A, Jones G, Abramson MJ, Robertson CF, Dharmage SC, Brown MA, Montgomery GW, Thompson PJ (2011) Identification of IL6R and chromosome 11q13.5 as risk loci for asthma. Lancet 378:1006–1014

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Ramasamy A, Curjuric I, Coin LJ, Kumar A, McArdle WL, Imboden M, Leynaert B, Kogevinas M, Schmid-Grendelmeier P, Pekkanen J, Wjst M, Bircher AJ, Sovio U, Rochat T, Hartikainen AL, Balding DJ, Jarvelin MR, Probst-Hensch N, Strachan DP, Jarvis DL (2011) A genome-wide meta-analysis of genetic variants associated with allergic rhinitis and grass sensitization and their interaction with birth order. J Allergy Clin Immunol 128:996–1005

    CAS  PubMed  Google Scholar 

  113. Bonnelykke K, Matheson MC, Pers TH, Granell R, Strachan DP, Alves AC, Linneberg A, Curtin JA, Warrington NM, Standl M, Kerkhof M, Jonsdottir I, Bukvic BK, Kaakinen M, Sleimann P, Thorleifsson G, Thorsteinsdottir U, Schramm K, Baltic S, Kreiner-Moller E, Simpson A, Pourcain BS, Coin L, Hui J, Walters EH, Tiesler CM, Duffy DL, Jones G, Ring SM, McArdle WL, Price L, Robertson CF, Pekkanen J, Tang CS, Thiering E, Montgomery GW, Hartikainen AL, Dharmage SC, Husemoen LL, Herder C, Kemp JP, Elliot P, James A, Waldenberger M, Abramson MJ, Fairfax BP, Knight JC, Gupta R, Thompson PJ, Holt P, Sly P, Hirschhorn JN, Blekic M, Weidinger S, Hakonarsson H, Stefansson K, Heinrich J, Postma DS, Custovic A, Pennell CE, Jarvelin MR, Koppelman GH, Timpson N, Ferreira MA, Bisgaard H, Henderson AJ (2013) Meta-analysis of genome-wide association studies identifies ten loci influencing allergic sensitization. Nat Genet 45:902–906

    CAS  PubMed  Google Scholar 

  114. Weidinger S, Willis-Owen SA, Kamatani Y, Baurecht H, Morar N, Liang L, Edser P, Street T, Rodriguez E, O’Regan GM, Beattie P, Folster-Holst R, Franke A, Novak N, Fahy CM, Winge MC, Kabesch M, Illig T, Heath S, Soderhall C, Melen E, Pershagen G, Kere J, Bradley M, Lieden A, Nordenskjold M, Harper JI, Irwin McLean WH, Brown SJ, Cookson WO, Mark Lathrop G, Irvine AD, Moffatt MF (2013) A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Hum Mol Genet 22:4841–4856

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Nickel RG, Casolaro V, Wahn U, Beyer K, Barnes KC, Plunkett BS, Freidhoff LR, Sengler C, Plitt JR, Schleimer RP, Caraballo L, Naidu RP, Levett PN, Beaty TH, Huang SK (2000) Atopic dermatitis is associated with a functional mutation in the promoter of the C-C chemokine RANTES. J Immunol 164:1612–1616

    CAS  PubMed  Google Scholar 

  116. Leung TF, Tang NL, Lam CW, Li AM, Fung SL, Chan IH, Wong GW (2005) RANTES G-401A polymorphism is associated with allergen sensitization and FEV1 in Chinese children. Respir Med 99:216–219

    CAS  PubMed  Google Scholar 

  117. Bai B, Tanaka K, Tazawa T, Yamamoto N, Sugiura H (2005) Association between RANTES promoter polymorphism-401A and enhanced RANTES production in atopic dermatitis patients. J Dermatol Sci 39:189–191

    CAS  PubMed  Google Scholar 

  118. Tsunemi Y, Saeki H, Nakamura K, Sekiya T, Hirai K, Fujita H, Asano N, Tanida Y, Kakinuma T, Wakugawa M, Torii H, Tamaki K (2002) Eotaxin gene single nucleotide polymorphisms in the promoter and exon regions are not associated with susceptibility to atopic dermatitis, but two of them in the promoter region are associated with serum IgE levels in patients with atopic dermatitis. J Dermatol Sci 29:222–228

    CAS  PubMed  Google Scholar 

  119. Rigoli L, Caminiti L, Di Bella C, Procopio V, Cuppari C, Vita D, Barberio G, Salpietro C, Pajno GB (2008) Investigation of the eotaxin gene -426C–>T, -384A–>G and 67G–>a single-nucleotide polymorphisms and atopic dermatitis in Italian children using family-based association methods. Clin Exp Dermatol 33:316–321

    CAS  PubMed  Google Scholar 

  120. Yu B, Shao Y, Zhang J, Dong XL, Liu WL, Yang H, Liu L, Li MH, Yue CF, Fang ZY, Zhang C, Hu XP, Chen BC, Wu Q, Chen YW, Zhang W, Wan J (2010) Polymorphisms in human histamine receptor H4 gene are associated with atopic dermatitis. Br J Dermatol 162:1038–1043

    CAS  PubMed  Google Scholar 

  121. Chen B, Ye T, Shao Y, Zhang J, Zhong Q, Hu X, Zhang W, Yu B (2013) Association between copy-number variations of the human histamine H4 receptor gene and atopic dermatitis in a Chinese population. Clin Exp Dermatol 38:295–300, quiz 300-291

    CAS  PubMed  Google Scholar 

  122. Potaczek DP, Sanak M, Mastalerz L, Setkowicz M, Kaczor M, Nizankowska E, Szczeklik A (2006) The alpha-chain of high-affinity receptor for IgE (FcepsilonRIalpha) gene polymorphisms and serum IgE levels. Allergy 61:1230–1233

    CAS  PubMed  Google Scholar 

  123. Niwa Y, Potaczek DP, Kanada S, Takagi A, Shimokawa N, Ito T, Mitsuishi K, Okubo Y, Tajima M, Hobo A, Ng W, Tsuboi R, Ikeda S, Ogawa H, Okumura K, Nishiyama C (2010) FcepsilonRIalpha gene (FCER1A) promoter polymorphisms and total serum IgE levels in Japanese atopic dermatitis patients. Int J Immunogenet 37:139–141

    CAS  PubMed  Google Scholar 

  124. Park KY, Park MK, Kim EJ, Lee MK, Seo SJ (2011) FCepsilonRI gene promoter polymorphisms and total IgE levels in susceptibility to atopic dermatitis in Korea. J Korean Med Sci 26:870–874

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhou J, Zhou Y, Lin LH, Wang J, Peng X, Li J, Li L (2012) Association of polymorphisms in the promoter region of FCER1A gene with atopic dermatitis, chronic uticaria, asthma, and serum immunoglobulin E levels in a Han Chinese population. Hum Immunol 73:301–305

    CAS  PubMed  Google Scholar 

  126. Kalinin AE, Kajava AV, Steinert PM (2002) Epithelial barrier function: assembly and structural features of the cornified cell envelope. Bioessays 24:789–800

    CAS  PubMed  Google Scholar 

  127. Kircik L, Hougeir F, Bikowski J (2013) Atopic dermatitis, and the role for a ceramide-dominant, physiologic lipid-based barrier repair emulsion. J Drugs Dermatol 12:1024–1027

    CAS  PubMed  Google Scholar 

  128. Elias PM (2005) Stratum corneum defensive functions: an integrated view. J Investig Dermatol 125:183–200

    CAS  PubMed  Google Scholar 

  129. Wolf R, Wolf D (2012) Abnormal epidermal barrier in the pathogenesis of atopic dermatitis. Clin Dermatol 30:329–334

    PubMed  Google Scholar 

  130. Sandilands A, Sutherland C, Irvine AD, McLean WH (2009) Filaggrin in the frontline: role in skin barrier function and disease. J Cell Sci 122:1285–1294

    CAS  PubMed  PubMed Central  Google Scholar 

  131. O’Regan GM, Sandilands A, McLean WH, Irvine AD (2009) Filaggrin in atopic dermatitis. J Allergy Clin Immunol 124:R2–R6

    PubMed  Google Scholar 

  132. Rawlings AV, Scott IR, Harding CR, Bowser PA (1994) Stratum corneum moisturization at the molecular level. J Investig Dermatol 103:731–741

    CAS  PubMed  Google Scholar 

  133. Nguyen VT, Ndoye A, Hall LL, Zia S, Arredondo J, Chernyavsky AI, Kist DA, Zelickson BD, Lawry MA, Grando SA (2001) Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine. J Cell Sci 114:1189–1204

    CAS  PubMed  Google Scholar 

  134. Elias PM, Steinhoff M (2008) “Outside-to-inside” (and now back to “outside”) pathogenic mechanisms in atopic dermatitis. J Investig Dermatol 128:1067–1070

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM (2003) pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Investig Dermatol 121:345–353

    CAS  PubMed  Google Scholar 

  136. Hachem JP, Man MQ, Crumrine D, Uchida Y, Brown BE, Rogiers V, Roseeuw D, Feingold KR, Elias PM (2005) Sustained serine proteases activity by prolonged increase in pH leads to degradation of lipid processing enzymes and profound alterations of barrier function and stratum corneum integrity. J Investig Dermatol 125:510–520

    CAS  PubMed  Google Scholar 

  137. Fluhr JW, Kao J, Jain M, Ahn SK, Feingold KR, Elias PM (2001) Generation of free fatty acids from phospholipids regulates stratum corneum acidification and integrity. J Investig Dermatol 117:44–51

    CAS  PubMed  Google Scholar 

  138. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, Debenedetto A, Schneider L, Beck LA, Barnes KC, Leung DY (2007) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 120:150–155

    CAS  PubMed  PubMed Central  Google Scholar 

  139. Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S, Ogg GS (2011) Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes. Br J Dermatol 165:492–498

    CAS  PubMed  Google Scholar 

  140. Gutowska-Owsiak D, Schaupp AL, Salimi M, Selvakumar TA, McPherson T, Taylor S, Ogg GS (2012) IL-17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol 21:104–110

    CAS  PubMed  Google Scholar 

  141. Cornelissen C, Marquardt Y, Czaja K, Wenzel J, Frank J, Luscher-Firzlaff J, Luscher B, Baron JM (2012) IL-31 regulates differentiation and filaggrin expression in human organotypic skin models. J Allergy Clin Immunol 129:426–433, 433 e421-428

    CAS  PubMed  Google Scholar 

  142. Kawasaki H, Nagao K, Kubo A, Hata T, Shimizu A, Mizuno H, Yamada T, Amagai M (2012) Altered stratum corneum barrier and enhanced percutaneous immune responses in filaggrin-null mice. J Allergy Clin Immunol 129(1538–1546):e1536

    Google Scholar 

  143. Hudson TJ (2006) Skin barrier function and allergic risk. Nat Genet 38:399–400

    CAS  PubMed  Google Scholar 

  144. Uchida Y, Behne M, Quiec D, Elias PM, Holleran WM (2001) Vitamin C stimulates sphingolipid production and markers of barrier formation in submerged human keratinocyte cultures. J Investig Dermatol 117:1307–1313

    CAS  PubMed  Google Scholar 

  145. Oda Y, Uchida Y, Moradian S, Crumrine D, Elias PM, Bikle DD (2009) Vitamin D receptor and coactivators SRC2 and 3 regulate epidermis-specific sphingolipid production and permeability barrier formation. J Investig Dermatol 129:1367–1378

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Borkowski AW, Park K, Uchida Y, Gallo RL (2013) Activation of TLR3 in keratinocytes increases expression of genes involved in formation of the epidermis, lipid accumulation, and epidermal organelles. J Investig Dermatol 133:2031–2040

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Imokawa G, Abe A, Jin K, Higaki Y, Kawashima M, Hidano A (1991) Decreased level of ceramides in stratum corneum of atopic dermatitis: an etiologic factor in atopic dry skin? J Investig Dermatol 96:523–526

    CAS  PubMed  Google Scholar 

  148. Angelova-Fischer I, Mannheimer AC, Hinder A, Ruether A, Franke A, Neubert RH, Fischer TW, Zillikens D (2011) Distinct barrier integrity phenotypes in filaggrin-related atopic eczema following sequential tape stripping and lipid profiling. Exp Dermatol 20:351–356

    PubMed  Google Scholar 

  149. Janssens M, van Smeden J, Gooris GS, Bras W, Portale G, Caspers PJ, Vreeken RJ, Hankemeier T, Kezic S, Wolterbeek R, Lavrijsen AP, Bouwstra JA (2012) Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J Lipid Res 53:2755–2766

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Sajic D, Asiniwasis R, Skotnicki-Grant S (2012) A look at epidermal barrier function in atopic dermatitis: physiologic lipid replacement and the role of ceramides. Skin Ther Lett 17:6–9

    CAS  Google Scholar 

  151. Kirschner N, Houdek P, Fromm M, Moll I, Brandner JM (2010) Tight junctions form a barrier in human epidermis. Eur J Cell Biol 89:839–842

    CAS  PubMed  Google Scholar 

  152. Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Investig Dermatol 127:2525–2532

    CAS  PubMed  Google Scholar 

  153. De Benedetto A, Rafaels NM, McGirt LY, Ivanov AI, Georas SN, Cheadle C, Berger AE, Zhang K, Vidyasagar S, Yoshida T, Boguniewicz M, Hata T, Schneider LC, Hanifin JM, Gallo RL, Novak N, Weidinger S, Beaty TH, Leung DY, Barnes KC, Beck LA (2011) Tight junction defects in patients with atopic dermatitis. J Allergy Clin Immunol 127(773–786):e771–e777

    Google Scholar 

  154. Furuse M, Hata M, Furuse K, Yoshida Y, Haratake A, Sugitani Y, Noda T, Kubo A, Tsukita S (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier: a lesson from claudin-1-deficient mice. J Cell Biol 156:1099–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Yuki T, Yoshida H, Akazawa Y, Komiya A, Sugiyama Y, Inoue S (2011) Activation of TLR2 enhances tight junction barrier in epidermal keratinocytes. J Immunol 187:3230–3237

    CAS  PubMed  Google Scholar 

  156. Kuo IH, Carpenter-Mendini A, Yoshida T, McGirt LY, Ivanov AI, Barnes KC, Gallo RL, Borkowski AW, Yamasaki K, Leung DY, Georas SN, De Benedetto A, Beck LA (2013) Activation of epidermal toll-like receptor 2 enhances tight junction function: implications for atopic dermatitis and skin barrier repair. J Investig Dermatol 133:988–998

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Braff MH, Di Nardo A, Gallo RL (2005) Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Investig Dermatol 124:394–400

    CAS  PubMed  Google Scholar 

  158. Schittek B, Paulmann M, Senyurek I, Steffen H (2008) The role of antimicrobial peptides in human skin and in skin infectious diseases. Infect Dis Drug Targets 8:135–143

    CAS  Google Scholar 

  159. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55

    CAS  PubMed  Google Scholar 

  160. Namjoshi S, Caccetta R, Benson HA (2008) Skin peptides: biological activity and therapeutic opportunities. J Pharm Sci 97:2524–2542

    CAS  PubMed  Google Scholar 

  161. Glaser R, Meyer-Hoffert U, Harder J, Cordes J, Wittersheim M, Kobliakova J, Folster-Holst R, Proksch E, Schroder JM, Schwarz T (2009) The antimicrobial protein psoriasin (S100A7) is upregulated in atopic dermatitis and after experimental skin barrier disruption. J Investig Dermatol 129:641–649

    PubMed  Google Scholar 

  162. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, Gallo RL, Leung DY (2002) Endogenous antimicrobial peptides and skin infections in atopic dermatitis. N Engl J Med 347:1151–1160

    CAS  PubMed  Google Scholar 

  163. Nomura I, Goleva E, Howell MD, Hamid QA, Ong PY, Hall CF, Darst MA, Gao B, Boguniewicz M, Travers JB, Leung DY (2003) Cytokine milieu of atopic dermatitis, as compared to psoriasis, skin prevents induction of innate immune response genes. J Immunol 171:3262–3269

    CAS  PubMed  Google Scholar 

  164. Howell MD, Novak N, Bieber T, Pastore S, Girolomoni G, Boguniewicz M, Streib J, Wong C, Gallo RL, Leung DY (2005) Interleukin-10 downregulates anti-microbial peptide expression in atopic dermatitis. J Investig Dermatol 125:738–745

    CAS  PubMed  Google Scholar 

  165. Howell MD, Boguniewicz M, Pastore S, Novak N, Bieber T, Girolomoni G, Leung DY (2006) Mechanism of HBD-3 deficiency in atopic dermatitis. Clin Immunol 121:332–338

    CAS  PubMed  Google Scholar 

  166. Jeong CW, Ahn KS, Rho NK, Park YD, Lee DY, Lee JH, Lee ES, Yang JM (2003) Differential in vivo cytokine mRNA expression in lesional skin of intrinsic vs. extrinsic atopic dermatitis patients using semiquantitative RT-PCR. Clin Exp Allergy 33:1717–1724

    CAS  PubMed  Google Scholar 

  167. Kisich KO, Carspecken CW, Fieve S, Boguniewicz M, Leung DY (2008) Defective killing of Staphylococcus aureus in atopic dermatitis is associated with reduced mobilization of human beta-defensin-3. J Allergy Clin Immunol 122:62–68

    CAS  PubMed  Google Scholar 

  168. Ong PY, Leung DY (2006) Immune dysregulation in atopic dermatitis. Curr Allergy Asthma Rep 6:384–389

    CAS  PubMed  Google Scholar 

  169. Kubo M, Inoue H (2006) Suppressor of cytokine signaling 3 (SOCS3) in Th2 cells evokes Th2 cytokines, IgE, and eosinophilia. Curr Allergy Asthma Rep 6:32–39

    CAS  PubMed  Google Scholar 

  170. Neis MM, Peters B, Dreuw A, Wenzel J, Bieber T, Mauch C, Krieg T, Stanzel S, Heinrich PC, Merk HF, Bosio A, Baron JM, Hermanns HM (2006) Enhanced expression levels of IL-31 correlate with IL-4 and IL-13 in atopic and allergic contact dermatitis. J Allergy Clin Immunol 118:930–937

    CAS  PubMed  Google Scholar 

  171. Bieber T (2010) Atopic dermatitis. Ann Dermatol 22:125–137

    CAS  PubMed  PubMed Central  Google Scholar 

  172. Hamid Q, Boguniewicz M, Leung DY (1994) Differential in situ cytokine gene expression in acute versus chronic atopic dermatitis. J Clin Invest 94:870–876

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Brandt EB, Sivaprasad U (2011) Th2 cytokines and atopic dermatitis. J Clin Cell Immunol 2(3):110

    PubMed  PubMed Central  Google Scholar 

  174. Chan LS, Robinson N, Xu L (2001) Expression of interleukin-4 in the epidermis of transgenic mice results in a pruritic inflammatory skin disease: an experimental animal model to study atopic dermatitis. J Investig Dermatol 117:977–983

    CAS  PubMed  Google Scholar 

  175. Chen L, Martinez O, Overbergh L, Mathieu C, Prabhakar BS, Chan LS (2004) Early up-regulation of Th2 cytokines and late surge of Th1 cytokines in an atopic dermatitis model. Clin Exp Immunol 138:375–387

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Oh MH, Oh SY, Yu J, Myers AC, Leonard WJ, Liu YJ, Zhu Z, Zheng T (2011) IL-13 induces skin fibrosis in atopic dermatitis by thymic stromal lymphopoietin. J Immunol 186:7232–7242

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Imai Y, Yasuda K, Sakaguchi Y, Haneda T, Mizutani H, Yoshimoto T, Nakanishi K, Yamanishi K (2013) Skin-specific expression of IL-33 activates group 2 innate lymphoid cells and elicits atopic dermatitis-like inflammation in mice. Proc Natl Acad Sci U S A 110:13921–13926

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Zheng T, Oh MH, Oh SY, Schroeder JT, Glick AB, Zhu Z (2009) Transgenic expression of interleukin-13 in the skin induces a pruritic dermatitis and skin remodeling. J Investig Dermatol 129:742–751

    CAS  PubMed  Google Scholar 

  179. Abu-Ghazaleh RI, Gleich GJ, Prendergast FG (1992) Interaction of eosinophil granule major basic protein with synthetic lipid bilayers: a mechanism for toxicity. J Membr Biol 128:153–164

    CAS  PubMed  Google Scholar 

  180. Howell MD, Fairchild HR, Kim BE, Bin L, Boguniewicz M, Redzic JS, Hansen KC, Leung DY (2008) Th2 cytokines act on S100/A11 to downregulate keratinocyte differentiation. J Investig Dermatol 128:2248–2258

    CAS  PubMed  Google Scholar 

  181. Brombacher F (2000) The role of interleukin-13 in infectious diseases and allergy. Bioessays 22:646–656

    CAS  PubMed  Google Scholar 

  182. Kim BE, Leung DY, Boguniewicz M, Howell MD (2008) Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol 126:332–337

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Kimura M, Tsuruta S, Yoshida T (1998) Correlation of house dust mite-specific lymphocyte proliferation with IL-5 production, eosinophilia, and the severity of symptoms in infants with atopic dermatitis. J Allergy Clin Immunol 101:84–89

    CAS  PubMed  Google Scholar 

  184. Park JH, Choi YL, Namkung JH, Kim WS, Lee JH, Park HJ, Lee ES, Yang JM (2006) Characteristics of extrinsic vs. intrinsic atopic dermatitis in infancy: correlations with laboratory variables. Br J Dermatol 155:778–783

    PubMed  Google Scholar 

  185. Bilsborough J, Leung DY, Maurer M, Howell M, Boguniewicz M, Yao L, Storey H, LeCiel C, Harder B, Gross JA (2006) IL-31 is associated with cutaneous lymphocyte antigen-positive skin homing T cells in patients with atopic dermatitis. J Allergy Clin Immunol 117:418–425

    CAS  PubMed  Google Scholar 

  186. Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, Kemeny L, Alenius H, Dieu-Nosjean MC, Meller S, Rieker J, Steinhoff M, Hoffmann TK, Ruzicka T, Zlotnik A, Homey B (2006) IL-31: a new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol 117:411–417

    CAS  PubMed  Google Scholar 

  187. Dillon SR, Sprecher C, Hammond A, Bilsborough J, Rosenfeld-Franklin M, Presnell SR, Haugen HS, Maurer M, Harder B, Johnston J, Bort S, Mudri S, Kuijper JL, Bukowski T, Shea P, Dong DL, Dasovich M, Grant FJ, Lockwood L, Levin SD, LeCiel C, Waggie K, Day H, Topouzis S, Kramer J, Kuestner R, Chen Z, Foster D, Parrish-Novak J, Gross JA (2004) Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat Immunol 5:752–760

    CAS  PubMed  Google Scholar 

  188. Raap U, Weissmantel S, Gehring M, Eisenberg AM, Kapp A, Folster-Holst R (2012) IL-31 significantly correlates with disease activity and Th2 cytokine levels in children with atopic dermatitis. Pediatr Allergy Immunol 23:285–288

    PubMed  Google Scholar 

  189. Raap U, Wichmann K, Bruder M, Stander S, Wedi B, Kapp A, Werfel T (2008) Correlation of IL-31 serum levels with severity of atopic dermatitis. J Allergy Clin Immunol 122:421–423

    CAS  PubMed  Google Scholar 

  190. Zhang Q, Putheti P, Zhou Q, Liu Q, Gao W (2008) Structures and biological functions of IL-31 and IL-31 receptors. Cytokine Growth Factor Rev 19:347–356

    PubMed  PubMed Central  Google Scholar 

  191. Kasraie S, Niebuhr M, Baumert K, Werfel T (2011) Functional effects of interleukin 31 in human primary keratinocytes. Allergy 66:845–852

    CAS  PubMed  Google Scholar 

  192. Kasraie S, Niebuhr M, Werfel T (2010) Interleukin (IL)-31 induces pro-inflammatory cytokines in human monocytes and macrophages following stimulation with staphylococcal exotoxins. Allergy 65:712–721

    CAS  PubMed  Google Scholar 

  193. Hatano Y, Adachi Y, Elias PM, Crumrine D, Sakai T, Kurahashi R, Katagiri K, Fujiwara S (2013) The Th2 cytokine, interleukin-4, abrogates the cohesion of normal stratum corneum in mice: implications for pathogenesis of atopic dermatitis. Exp Dermatol 22:30–35

    CAS  PubMed  Google Scholar 

  194. Iwasaki M, Nagata K, Takano S, Takahashi K, Ishii N, Ikezawa Z (2002) Association of a new-type prostaglandin D2 receptor CRTH2 with circulating T helper 2 cells in patients with atopic dermatitis. J Investig Dermatol 119:609–616

    CAS  PubMed  Google Scholar 

  195. Oiwa M, Satoh T, Watanabe M, Niwa H, Hirai H, Nakamura M, Yokozeki H (2008) CRTH2-dependent, STAT6-independent induction of cedar pollen dermatitis. Clin Exp Allergy 38:1357–1366

    CAS  PubMed  Google Scholar 

  196. He R, Oyoshi MK, Wang JY, Hodge MR, Jin H, Geha RS (2010) The prostaglandin D(2) receptor CRTH2 is important for allergic skin inflammation after epicutaneous antigen challenge. J Allergy Clin Immunol 126:784–790

    CAS  PubMed  PubMed Central  Google Scholar 

  197. Satoh T, Moroi R, Aritake K, Urade Y, Kanai Y, Sumi K, Yokozeki H, Hirai H, Nagata K, Hara T, Utsuyama M, Hirokawa K, Sugamura K, Nishioka K, Nakamura M (2006) Prostaglandin D2 plays an essential role in chronic allergic inflammation of the skin via CRTH2 receptor. J Immunol 177:2621–2629

    CAS  PubMed  Google Scholar 

  198. Grewe M, Bruijnzeel-Koomen CA, Schopf E, Thepen T, Langeveld-Wildschut AG, Ruzicka T, Krutmann J (1998) A role for Th1 and Th2 cells in the immunopathogenesis of atopic dermatitis. Immunol Today 19:359–361

    CAS  PubMed  Google Scholar 

  199. Novak N, Bieber T (2005) The role of dendritic cell subtypes in the pathophysiology of atopic dermatitis. J Am Acad Dermatol 53:S171–S176

    PubMed  Google Scholar 

  200. Yamanaka K, Mizutani H (2011) The role of cytokines/chemokines in the pathogenesis of atopic dermatitis. Curr Probl Dermatol 41:80–92

    CAS  PubMed  Google Scholar 

  201. Rigotti E, Piacentini GL, Ress M, Pigozzi R, Boner AL, Peroni DG (2006) Transforming growth factor-beta and interleukin-10 in breast milk and development of atopic diseases in infants. Clin Exp Allergy 36:614–618

    CAS  PubMed  Google Scholar 

  202. Toda M, Leung DY, Molet S, Boguniewicz M, Taha R, Christodoulopoulos P, Fukuda T, Elias JA, Hamid QA (2003) Polarized in vivo expression of IL-11 and IL-17 between acute and chronic skin lesions. J Allergy Clin Immunol 111:875–881

    CAS  PubMed  Google Scholar 

  203. Narbutt J, Lesiak A, Sysa-Jedrzeiowska A, Zakrzewski M, Bogaczewicz J, Stelmach I, Kuna P (2009) The imbalance in serum concentration of Th-1- and Th-2-derived chemokines as one of the factors involved in pathogenesis of atopic dermatitis. Mediat Inflamm 2009:269541

    Google Scholar 

  204. Kumatori A, Yang D, Suzuki S, Nakamura M (2002) Cooperation of STAT-1 and IRF-1 in interferon-gamma-induced transcription of the gp91(phox) gene. J Biol Chem 277:9103–9111

    CAS  PubMed  Google Scholar 

  205. Teramoto T, Fukao T, Tashita H, Inoue R, Kaneko H, Takemura M, Kondo N (1998) Serum IgE level is negatively correlated with the ability of peripheral mononuclear cells to produce interferon gamma (IFNgamma): evidence of reduced expression of IFNgamma mRNA in atopic patients. Clin Exp Allergy 28:74–82

    CAS  PubMed  Google Scholar 

  206. Katsunuma T, Kawahara H, Yuki K, Akasawa A, Saito H (2004) Impaired interferon-gamma production in a subset population of severe atopic dermatitis. Int Arch Allergy Immunol 134:240–247

    CAS  PubMed  Google Scholar 

  207. Gros E, Petzold S, Maintz L, Bieber T, Novak N (2011) Reduced IFN-gamma receptor expression and attenuated IFN-gamma response by dendritic cells in patients with atopic dermatitis. J Allergy Clin Immunol 128:1015–1021

    CAS  PubMed  Google Scholar 

  208. Leung DY, Gao PS, Grigoryev DN, Rafaels NM, Streib JE, Howell MD, Taylor PA, Boguniewicz M, Canniff J, Armstrong B, Zaccaro DJ, Schneider LC, Hata TR, Hanifin JM, Beck LA, Weinberg A, Barnes KC (2011) Human atopic dermatitis complicated by eczema herpeticum is associated with abnormalities in IFN-gamma response. J Allergy Clin Immunol 127(965–973):e961–e965

    Google Scholar 

  209. Gao PS, Leung DY, Rafaels NM, Boguniewicz M, Hand T, Gao L, Hata TR, Schneider LC, Hanifin JM, Beaty TH, Beck LA, Weinberg A, Barnes KC (2012) Genetic variants in interferon regulatory factor 2 (IRF2) are associated with atopic dermatitis and eczema herpeticum. J Investig Dermatol 132:650–657

    CAS  PubMed  PubMed Central  Google Scholar 

  210. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    CAS  PubMed  Google Scholar 

  211. Kosaka H, Yoshimoto T, Yoshimoto T, Fujimoto J, Nakanishi K (2008) Interferon-gamma is a therapeutic target molecule for prevention of postoperative adhesion formation. Nat Med 14:437–441

    CAS  PubMed  Google Scholar 

  212. Seltmann J, Werfel T, Wittmann M (2013) Evidence for a regulatory loop between IFN-gamma and IL-33 in skin inflammation. Exp Dermatol 22:102–107

    CAS  PubMed  Google Scholar 

  213. Lamkhioued B, Abdelilah SG, Hamid Q, Mansour N, Delespesse G, Renzi PM (2003) The CCR3 receptor is involved in eosinophil differentiation and is up-regulated by Th2 cytokines in CD34+ progenitor cells. J Immunol 170:537–547

    CAS  PubMed  Google Scholar 

  214. Rebane A, Zimmermann M, Aab A, Baurecht H, Koreck A, Karelson M, Abram K, Metsalu T, Pihlap M, Meyer N, Folster-Holst R, Nagy N, Kemeny L, Kingo K, Vilo J, Illig T, Akdis M, Franke A, Novak N, Weidinger S, Akdis CA (2012) Mechanisms of IFN-gamma-induced apoptosis of human skin keratinocytes in patients with atopic dermatitis. J Allergy Clin Immunol 129:1297–1306

    CAS  PubMed  Google Scholar 

  215. Howell MD, Kim BE, Gao P, Grant AV, Boguniewicz M, DeBenedetto A, Schneider L, Beck LA, Barnes KC, Leung DY (2009) Cytokine modulation of atopic dermatitis filaggrin skin expression. J Allergy Clin Immunol 124:R7–R12

    CAS  PubMed  Google Scholar 

  216. Yawalkar N, Karlen S, Egli F, Brand CU, Graber HU, Pichler WJ, Braathen LR (2000) Down-regulation of IL-12 by topical corticosteroids in chronic atopic dermatitis. J Allergy Clin Immunol 106:941–947

    CAS  PubMed  Google Scholar 

  217. Hamid Q, Naseer T, Minshall EM, Song YL, Boguniewicz M, Leung DY (1996) In vivo expression of IL-12 and IL-13 in atopic dermatitis. J Allergy Clin Immunol 98:225–231

    CAS  PubMed  Google Scholar 

  218. El-Mezayen RE, Matsumoto T (2004) In vitro responsiveness to IL-18 in combination with IL-12 or IL-2 by PBMC from patients with bronchial asthma and atopic dermatitis. Clin Immunol 111:61–68

    CAS  PubMed  Google Scholar 

  219. Shikano H, Kato Z, Kaneko H, Watanabe M, Inoue R, Kasahara K, Takemura M, Kondo N (2001) IFN-gamma production in response to IL-18 or IL-12 stimulation by peripheral blood mononuclear cells of atopic patients. Clin Exp Allergy 31:1263–1270

    CAS  PubMed  Google Scholar 

  220. Aral M, Arican O, Gul M, Sasmaz S, Kocturk SA, Kastal U, Ekerbicer HC (2006) The relationship between serum levels of total IgE, IL-18, IL-12, IFN-gamma and disease severity in children with atopic dermatitis. Mediat Inflamm 2006:73098

    Google Scholar 

  221. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141

    CAS  PubMed  PubMed Central  Google Scholar 

  222. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, Komiyama Y, Fujikado N, Tanahashi Y, Akitsu A, Kotaki H, Sudo K, Nakae S, Sasakawa C, Iwakura Y (2009) Differential roles of interleukin-17A and -17F in host defense against mucoepithelial bacterial infection and allergic responses. Immunity 30:108–119

    CAS  PubMed  Google Scholar 

  223. Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y (2008) Possible pathogenic role of Th17 cells for atopic dermatitis. J Investig Dermatol 128:2625–2630

    CAS  PubMed  Google Scholar 

  224. Guttman-Yassky E, Lowes MA, Fuentes-Duculan J, Zaba LC, Cardinale I, Nograles KE, Khatcherian A, Novitskaya I, Carucci JA, Bergman R, Krueger JG (2008) Low expression of the IL-23/Th17 pathway in atopic dermatitis compared to psoriasis. J Immunol 181:7420–7427

    CAS  PubMed  PubMed Central  Google Scholar 

  225. Hayashida S, Uchi H, Moroi Y, Furue M (2011) Decrease in circulating Th17 cells correlates with increased levels of CCL17, IgE and eosinophils in atopic dermatitis. J Dermatol Sci 61:180–186

    CAS  PubMed  Google Scholar 

  226. Nograles KE, Suarez-Farinas M, Shemer A, Fuentes-Duculan J, Chiricozzi A, Cardinale I, Zaba LC, Kikuchi T, Ramon M, Bergman R, Krueger JG, Guttman-Yassky E (2010) Atopic dermatitis keratinocytes exhibit normal T(H)17 cytokine responses. J Allergy Clin Immunol 125:744–746, 746 e741-746 e742

    CAS  PubMed  PubMed Central  Google Scholar 

  227. Nograles KE, Zaba LC, Shemer A, Fuentes-Duculan J, Cardinale I, Kikuchi T, Ramon M, Bergman R, Krueger JG, Guttman-Yassky E (2009) IL-22-producing “T22” T cells account for upregulated IL-22 in atopic dermatitis despite reduced IL-17-producing TH17 T cells. J Allergy Clin Immunol 123(1244–1252):e1242

    Google Scholar 

  228. Milovanovic M, Drozdenko G, Weise C, Babina M, Worm M (2010) Interleukin-17A promotes IgE production in human B cells. J Investig Dermatol 130:2621–2628

    CAS  PubMed  Google Scholar 

  229. Novak N, Leung DY (2011) Advances in atopic dermatitis. Curr Opin Immunol 23:778–783

    CAS  PubMed  PubMed Central  Google Scholar 

  230. He R, Kim HY, Yoon J, Oyoshi MK, MacGinnitie A, Goya S, Freyschmidt EJ, Bryce P, McKenzie AN, Umetsu DT, Oettgen HC, Geha RS (2009) Exaggerated IL-17 response to epicutaneous sensitization mediates airway inflammation in the absence of IL-4 and IL-13. J Allergy Clin Immunol 124(761–770):e761

    Google Scholar 

  231. Eyerich K, Pennino D, Scarponi C, Foerster S, Nasorri F, Behrendt H, Ring J, Traidl-Hoffmann C, Albanesi C, Cavani A (2009) IL-17 in atopic eczema: linking allergen-specific adaptive and microbial-triggered innate immune response. J Allergy Clin Immunol 123(59–66):e54

    Google Scholar 

  232. Eyerich S, Eyerich K, Pennino D, Carbone T, Nasorri F, Pallotta S, Cianfarani F, Odorisio T, Traidl-Hoffmann C, Behrendt H, Durham SR, Schmidt-Weber CB, Cavani A (2009) Th22 cells represent a distinct human T cell subset involved in epidermal immunity and remodeling. J Clin Invest 119:3573–3585

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Trifari S, Kaplan CD, Tran EH, Crellin NK, Spits H (2009) Identification of a human helper T cell population that has abundant production of interleukin 22 and is distinct from T(H)-17, T(H)1 and T(H)2 cells. Nat Immunol 10:864–871

    CAS  PubMed  Google Scholar 

  234. Sonnenberg GF, Fouser LA, Artis D (2010) Functional biology of the IL-22-IL-22R pathway in regulating immunity and inflammation at barrier surfaces. Adv Immunol 107:1–29

    CAS  PubMed  Google Scholar 

  235. Wu PW, Li J, Kodangattil SR, Luxenberg DP, Bennett F, Martino M, Collins M, Dunussi-Joannopoulos K, Gill DS, Wolfman NM, Fouser LA (2008) IL-22R, IL-10R2, and IL-22BP binding sites are topologically juxtaposed on adjacent and overlapping surfaces of IL-22. J Mol Biol 382:1168–1183

    CAS  PubMed  Google Scholar 

  236. Alam MS, Maekawa Y, Kitamura A, Tanigaki K, Yoshimoto T, Kishihara K, Yasutomo K (2010) Notch signaling drives IL-22 secretion in CD4+ T cells by stimulating the aryl hydrocarbon receptor. Proc Natl Acad Sci U S A 107:5943–5948

    PubMed  PubMed Central  Google Scholar 

  237. Boniface K, Bernard FX, Garcia M, Gurney AL, Lecron JC, Morel F (2005) IL-22 inhibits epidermal differentiation and induces proinflammatory gene expression and migration of human keratinocytes. J Immunol 174:3695–3702

    CAS  PubMed  Google Scholar 

  238. Nograles KE, Zaba LC, Guttman-Yassky E, Fuentes-Duculan J, Suarez-Farinas M, Cardinale I, Khatcherian A, Gonzalez J, Pierson KC, White TR, Pensabene C, Coats I, Novitskaya I, Lowes MA, Krueger JG (2008) Th17 cytokines interleukin (IL)-17 and IL-22 modulate distinct inflammatory and keratinocyte-response pathways. Br J Dermatol 159:1092–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  239. Souwer Y, Szegedi K, Kapsenberg ML, de Jong EC (2010) IL-17 and IL-22 in atopic allergic disease. Curr Opin Immunol 22:821–826

    CAS  PubMed  Google Scholar 

  240. Niebuhr M, Scharonow H, Gathmann M, Mamerow D, Werfel T (2010) Staphylococcal exotoxins are strong inducers of IL-22: a potential role in atopic dermatitis. J Allergy Clin Immunol 126(1176–1183):e1174

    Google Scholar 

  241. Guilloteau K, Paris I, Pedretti N, Boniface K, Juchaux F, Huguier V, Guillet G, Bernard FX, Lecron JC, Morel F (2010) Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1{alpha}, and TNF-{alpha} Recapitulates Some Features of Psoriasis. J Immunol

  242. Onoue A, Kabashima K, Kobayashi M, Mori T, Tokura Y (2009) Induction of eosinophil- and Th2-attracting epidermal chemokines and cutaneous late-phase reaction in tape-stripped skin. Exp Dermatol 18:1036–1043

    CAS  PubMed  Google Scholar 

  243. Zhu X, Li Z, Pan W, Qin L, Zhu G, Ke Y, Wu J, Bo P, Meng S (2012) Participation of Gab1 and Gab2 in IL-22-mediated keratinocyte proliferation, migration, and differentiation. Mol Cell Biochem 369:255–266

    CAS  PubMed  Google Scholar 

  244. Kawakami T, Ando T, Kimura M, Wilson BS, Kawakami Y (2009) Mast cells in atopic dermatitis. Curr Opin Immunol 21:666–678

    CAS  PubMed  PubMed Central  Google Scholar 

  245. Liu FT, Goodarzi H, Chen HY (2011) IgE, mast cells, and eosinophils in atopic dermatitis. Clin Rev Allergy Immunol 41:298–310

    CAS  PubMed  Google Scholar 

  246. Mekori YA, Metcalfe DD (1999) Mast cell-T cell interactions. J Allergy Clin Immunol 104:517–523

    CAS  PubMed  Google Scholar 

  247. Nakae S, Suto H, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2005) Mast cells enhance T cell activation: importance of mast cell-derived TNF. Proc Natl Acad Sci U S A 102:6467–6472

    CAS  PubMed  PubMed Central  Google Scholar 

  248. Nakae S, Suto H, Iikura M, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cells enhance T cell activation: importance of mast cell costimulatory molecules and secreted TNF. J Immunol 176:2238–2248

    CAS  PubMed  Google Scholar 

  249. Theiner G, Gessner A, Lutz MB (2006) The mast cell mediator PGD2 suppresses IL-12 release by dendritic cells leading to Th2 polarized immune responses in vivo. Immunobiology 211:463–472

    CAS  PubMed  Google Scholar 

  250. Tkaczyk C, Frandji P, Botros HG, Poncet P, Lapeyre J, Peronet R, David B, Mecheri S (1996) Mouse bone marrow-derived mast cells and mast cell lines constitutively produce B cell growth and differentiation activities. J Immunol 157:1720–1728

    CAS  PubMed  Google Scholar 

  251. Gauchat JF, Henchoz S, Mazzei G, Aubry JP, Brunner T, Blasey H, Life P, Talabot D, Flores-Romo L, Thompson J et al (1993) Induction of human IgE synthesis in B cells by mast cells and basophils. Nature 365:340–343

    CAS  PubMed  Google Scholar 

  252. Jawdat DM, Albert EJ, Rowden G, Haidl ID, Marshall JS (2004) IgE-mediated mast cell activation induces Langerhans cell migration in vivo. J Immunol 173:5275–5282

    CAS  PubMed  Google Scholar 

  253. Suto H, Nakae S, Kakurai M, Sedgwick JD, Tsai M, Galli SJ (2006) Mast cell-associated TNF promotes dendritic cell migration. J Immunol 176:4102–4112

    CAS  PubMed  Google Scholar 

  254. Kohda F, Koga T, Uchi H, Urabe K, Furue M (2002) Histamine-induced IL-6 and IL-8 production are differentially modulated by IFN-gamma and IL-4 in human keratinocytes. J Dermatol Sci 28:34–41

    CAS  PubMed  Google Scholar 

  255. Kanda N, Watanabe S (2004) Histamine enhances the production of granulocyte-macrophage colony-stimulating factor via protein kinase Calpha and extracellular signal-regulated kinase in human keratinocytes. J Investig Dermatol 122:863–872

    CAS  PubMed  Google Scholar 

  256. Horsmanheimo L, Harvima IT, Jarvikallio A, Harvima RJ, Naukkarinen A, Horsmanheimo M (1994) Mast cells are one major source of interleukin-4 in atopic dermatitis. Br J Dermatol 131:348–353

    CAS  PubMed  Google Scholar 

  257. Irani AM, Sampson HA, Schwartz LB (1989) Mast cells in atopic dermatitis. Allergy 44(Suppl 9):31–34

    PubMed  Google Scholar 

  258. Soter NA (1989) Morphology of atopic eczema. Allergy 44(Suppl 9):16–19

    PubMed  Google Scholar 

  259. Zhao L, Jin H, She R, Hu Y, Xiao C, Yu Y, Wang J, Sun F, Ng T, Chu S, Wang B (2006) A rodent model for allergic dermatitis induced by flea antigens. Vet Immunol Immunopathol 114:285–296

    CAS  PubMed  Google Scholar 

  260. Ui H, Andoh T, Lee JB, Nojima H, Kuraishi Y (2006) Potent pruritogenic action of tryptase mediated by PAR-2 receptor and its involvement in anti-pruritic effect of nafamostat mesilate in mice. Eur J Pharmacol 530:172–178

    CAS  PubMed  Google Scholar 

  261. Gombert M, Dieu-Nosjean MC, Winterberg F, Bunemann E, Kubitza RC, Da Cunha L, Haahtela A, Lehtimaki S, Muller A, Rieker J, Meller S, Pivarcsi A, Koreck A, Fridman WH, Zentgraf HW, Pavenstadt H, Amara A, Caux C, Kemeny L, Alenius H, Lauerma A, Ruzicka T, Zlotnik A, Homey B (2005) CCL1-CCR8 interactions: an axis mediating the recruitment of T cells and Langerhans-type dendritic cells to sites of atopic skin inflammation. J Immunol 174:5082–5091

    CAS  PubMed  Google Scholar 

  262. Sandig H, Bulfone-Paus S (2012) TLR signaling in mast cells: common and unique features. Front Immunol 3:185

    PubMed  PubMed Central  Google Scholar 

  263. Nagarkar DR, Poposki JA, Comeau MR, Biyasheva A, Avila PC, Schleimer RP, Kato A (2012) Airway epithelial cells activate TH2 cytokine production in mast cells through IL-1 and thymic stromal lymphopoietin. J Allergy Clin Immunol 130(225–232):e224

    Google Scholar 

  264. Kiehl P, Falkenberg K, Vogelbruch M, Kapp A (2001) Tissue eosinophilia in acute and chronic atopic dermatitis: a morphometric approach using quantitative image analysis of immunostaining. Br J Dermatol 145:720–729

    CAS  PubMed  Google Scholar 

  265. Simon D, Braathen LR, Simon HU (2004) Eosinophils and atopic dermatitis. Allergy 59:561–570

    CAS  PubMed  Google Scholar 

  266. Czech W, Krutmann J, Schopf E, Kapp A (1992) Serum eosinophil cationic protein (ECP) is a sensitive measure for disease activity in atopic dermatitis. Br J Dermatol 126:351–355

    CAS  PubMed  Google Scholar 

  267. Taniuchi S, Chihara J, Kojima T, Yamamoto A, Sasai M, Kobayashi Y (2001) Serum eosinophil derived neurotoxin may reflect more strongly disease severity in childhood atopic dermatitis than eosinophil cationic protein. J Dermatol Sci 26:79–82

    CAS  PubMed  Google Scholar 

  268. Morita H, Yamamoto K, Kitano Y (1995) Elevation of serum major basic protein in patients with atopic dermatitis. J Dermatol Sci 9:165–168

    CAS  PubMed  Google Scholar 

  269. Oymar K, Bjerknes R (2000) Urinary eosinophil protein X in children with atopic dermatitis: relation to atopy and disease activity. Allergy 55:964–968

    CAS  PubMed  Google Scholar 

  270. Gleich GJ, Adolphson CR, Leiferman KM (1993) The biology of the eosinophilic leukocyte. Annu Rev Med 44:85–101

    CAS  PubMed  Google Scholar 

  271. Minnicozzi M, Duran WN, Gleich GJ, Egan RW (1994) Eosinophil granule proteins increase microvascular macromolecular transport in the hamster cheek pouch. J Immunol 153:2664–2670

    CAS  PubMed  Google Scholar 

  272. Gleich GJ, Schroeter AL, Marcoux JP, Sachs MI, O’Connell EJ, Kohler PF (1984) Episodic angioedema associated with eosinophilia. Trans Assoc Am Phys 97:25–32

    CAS  PubMed  Google Scholar 

  273. Gleich GJ, Adolphson CR (1986) The eosinophilic leukocyte: structure and function. Adv Immunol 39:177–253

    CAS  PubMed  Google Scholar 

  274. Yang D, Rosenberg HF, Chen Q, Dyer KD, Kurosaka K, Oppenheim JJ (2003) Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood 102:3396–3403

    CAS  PubMed  Google Scholar 

  275. Yang D, Chen Q, Rosenberg HF, Rybak SM, Newton DL, Wang ZY, Fu Q, Tchernev VT, Wang M, Schweitzer B, Kingsmore SF, Patel DD, Oppenheim JJ, Howard OM (2004) Human ribonuclease A superfamily members, eosinophil-derived neurotoxin and pancreatic ribonuclease, induce dendritic cell maturation and activation. J Immunol 173:6134–6142

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Yang D, Chen Q, Su SB, Zhang P, Kurosaka K, Caspi RR, Michalek SM, Rosenberg HF, Zhang N, Oppenheim JJ (2008) Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2-MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J Exp Med 205:79–90

    CAS  PubMed  PubMed Central  Google Scholar 

  277. Rosenberg HF, Domachowske JB (2001) Eosinophils, eosinophil ribonucleases, and their role in host defense against respiratory virus pathogens. J Leukoc Biol 70:691–698

    CAS  PubMed  Google Scholar 

  278. Denburg JA, Telizyn S, Messner H, Lim B, Jamal N, Ackerman SJ, Gleich GJ, Bienenstock J (1985) Heterogeneity of human peripheral blood eosinophil-type colonies: evidence for a common basophil-eosinophil progenitor. Blood 66:312–318

    CAS  PubMed  Google Scholar 

  279. Nishinakamura R, Miyajima A, Mee PJ, Tybulewicz VL, Murray R (1996) Hematopoiesis in mice lacking the entire granulocyte-macrophage colony-stimulating factor/interleukin-3/interleukin-5 functions. Blood 88:2458–2464

    CAS  PubMed  Google Scholar 

  280. Straumann A, Simon HU (2004) The physiological and pathophysiological roles of eosinophils in the gastrointestinal tract. Allergy 59:15–25

    CAS  PubMed  Google Scholar 

  281. Yamaguchi Y, Hayashi Y, Sugama Y, Miura Y, Kasahara T, Kitamura S, Torisu M, Mita S, Tominaga A, Takatsu K (1988) Highly purified murine interleukin 5 (IL-5) stimulates eosinophil function and prolongs in vitro survival. IL-5 as an eosinophil chemotactic factor. J Exp Med 167:1737–1742

    CAS  PubMed  Google Scholar 

  282. Foster PS, Hogan SP, Ramsay AJ, Matthaei KI, Young IG (1996) Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J Exp Med 183:195–201

    CAS  PubMed  Google Scholar 

  283. Dent LA, Strath M, Mellor AL, Sanderson CJ (1990) Eosinophilia in transgenic mice expressing interleukin 5. J Exp Med 172:1425–1431

    CAS  PubMed  Google Scholar 

  284. Takatsu K (2011) Interleukin-5 and IL-5 receptor in health and diseases. Proc Jpn Acad Ser B Phys Biol Sci 87:463–485

    CAS  PubMed  PubMed Central  Google Scholar 

  285. Sehmi R, Wood LJ, Watson R, Foley R, Hamid Q, O’Byrne PM, Denburg JA (1997) Allergen-induced increases in IL-5 receptor alpha-subunit expression on bone marrow-derived CD34+ cells from asthmatic subjects. A novel marker of progenitor cell commitment towards eosinophilic differentiation. J Clin Invest 100:2466–2475

    CAS  PubMed  PubMed Central  Google Scholar 

  286. Kagami S, Nakajima H, Kumano K, Suzuki K, Suto A, Imada K, Davey HW, Saito Y, Takatsu K, Leonard WJ, Iwamoto I (2000) Both stat5a and stat5b are required for antigen-induced eosinophil and T-cell recruitment into the tissue. Blood 95:1370–1377

    CAS  PubMed  Google Scholar 

  287. Meads MB, Li ZW, Dalton WS (2010) A novel TNF receptor-associated factor 6 binding domain mediates NF-kappa B signaling by the common cytokine receptor beta subunit. J Immunol 185:1606–1615

    CAS  PubMed  PubMed Central  Google Scholar 

  288. Walsh GM, Hartnell A, Wardlaw AJ, Kurihara K, Sanderson CJ, Kay AB (1990) IL-5 enhances the in vitro adhesion of human eosinophils, but not neutrophils, in a leucocyte integrin (CD11/18)-dependent manner. Immunology 71:258–265

    CAS  PubMed  PubMed Central  Google Scholar 

  289. Esche C, de Benedetto A, Beck LA (2004) Keratinocytes in atopic dermatitis: inflammatory signals. Curr Allergy Asthma Rep 4:276–284

    PubMed  Google Scholar 

  290. Gahr N, Folster-Holst R, Weichenthal M, Christophers E, Schroder JM, Bartels J (2011) Dermal fibroblasts from acute inflamed atopic dermatitis lesions display increased eotaxin/CCL11 responsiveness to interleukin-4 stimulation. Br J Dermatol 164:586–592

    CAS  PubMed  Google Scholar 

  291. Woltmann G, McNulty CA, Dewson G, Symon FA, Wardlaw AJ (2000) Interleukin-13 induces PSGL-1/P-selectin-dependent adhesion of eosinophils, but not neutrophils, to human umbilical vein endothelial cells under flow. Blood 95:3146–3152

    CAS  PubMed  Google Scholar 

  292. Schmid-Grendelmeier P, Altznauer F, Fischer B, Bizer C, Straumann A, Menz G, Blaser K, Wuthrich B, Simon HU (2002) Eosinophils express functional IL-13 in eosinophilic inflammatory diseases. J Immunol 169:1021–1027

    CAS  PubMed  Google Scholar 

  293. Akdis M, Simon HU, Weigl L, Kreyden O, Blaser K, Akdis CA (1999) Skin homing (cutaneous lymphocyte-associated antigen-positive) CD8+ T cells respond to superantigen and contribute to eosinophilia and IgE production in atopic dermatitis. J Immunol 163:466–475

    CAS  PubMed  Google Scholar 

  294. Elsner J, Kapp A (1999) Regulation and modulation of eosinophil effector functions. Allergy 54:15–26

    CAS  PubMed  Google Scholar 

  295. Yawalkar N, Uguccioni M, Scharer J, Braunwalder J, Karlen S, Dewald B, Braathen LR, Baggiolini M (1999) Enhanced expression of eotaxin and CCR3 in atopic dermatitis. J Investig Dermatol 113:43–48

    CAS  PubMed  Google Scholar 

  296. Kato Y, Pawankar R, Kimura Y, Kawana S (2006) Increased expression of RANTES, CCR3 and CCR5 in the lesional skin of patients with atopic eczema. Int Arch Allergy Immunol 139:245–257

    CAS  PubMed  Google Scholar 

  297. Morita E, Kameyoshi Y, Hiragun T, Mihara S, Yamamoto S (2001) The C-C chemokines, RANTES and eotaxin, in atopic dermatitis. Allergy 56:194–195

    CAS  PubMed  Google Scholar 

  298. Gluck J, Rogala B (1999) Chemokine RANTES in atopic dermatitis. Arch Immunol Ther Exp (Warsz) 47:367–372

    CAS  Google Scholar 

  299. Ying S, Robinson DS, Meng Q, Barata LT, McEuen AR, Buckley MG, Walls AF, Askenase PW, Kay AB (1999) C-C chemokines in allergen-induced late-phase cutaneous responses in atopic subjects: association of eotaxin with early 6-hour eosinophils, and of eotaxin-2 and monocyte chemoattractant protein-4 with the later 24-hour tissue eosinophilia, and relationship to basophils and other C-C chemokines (monocyte chemoattractant protein-3 and RANTES). J Immunol 163:3976–3984

    CAS  PubMed  Google Scholar 

  300. Park CW, Lee BH, Han HJ, Lee CH, Ahn HK (2005) Tacrolimus decreases the expression of eotaxin, CCR3, RANTES and interleukin-5 in atopic dermatitis. Br J Dermatol 152:1173–1181

    CAS  PubMed  Google Scholar 

  301. Ma W, Bryce PJ, Humbles AA, Laouini D, Yalcindag A, Alenius H, Friend DS, Oettgen HC, Gerard C, Geha RS (2002) CCR3 is essential for skin eosinophilia and airway hyperresponsiveness in a murine model of allergic skin inflammation. J Clin Invest 109:621–628

    CAS  PubMed  PubMed Central  Google Scholar 

  302. Kagi MK, Joller-Jemelka H, Wuthrich B (1992) Correlation of eosinophils, eosinophil cationic protein and soluble interleukin-2 receptor with the clinical activity of atopic dermatitis. Dermatology 185:88–92

    CAS  PubMed  Google Scholar 

  303. Cheung PF, Wong CK, Ho AW, Hu S, Chen DP, Lam CW (2010) Activation of human eosinophils and epidermal keratinocytes by Th2 cytokine IL-31: implication for the immunopathogenesis of atopic dermatitis. Int Immunol 22:453–467

    CAS  PubMed  Google Scholar 

  304. Yao W, Chang J, Sehra S, Travers JB, Chang CH, Tepper RS, Kaplan MH (2010) Altered cytokine production by dendritic cells from infants with atopic dermatitis. Clin Immunol 137:406–414

    CAS  PubMed  PubMed Central  Google Scholar 

  305. Masuda K, Katoh N, Okuda F, Kishimoto S (2003) Increased levels of serum interleukin-16 in adult type atopic dermatitis. Acta Derm Venereol 83:249–253

    CAS  PubMed  Google Scholar 

  306. Frezzolini A, Paradisi M, Zaffiro A, Provini A, Cadoni S, Ruffelli M, De Pita O (2002) Circulating interleukin 16 (IL-16) in children with atopic/eczema dermatitis syndrome (AEDS): a novel serological marker of disease activity. Allergy 57:815–820

    CAS  PubMed  Google Scholar 

  307. Osterballe M, Mortz CG, Hansen TK, Andersen KE, Bindslev-Jensen C (2009) The prevalence of food hypersensitivity in young adults. Pediatr Allergy Immunol 20:686–692

    CAS  PubMed  Google Scholar 

  308. Illi S, von Mutius E, Lau S, Nickel R, Gruber C, Niggemann B, Wahn U (2004) The natural course of atopic dermatitis from birth to age 7 years and the association with asthma. J Allergy Clin Immunol 113:925–931

    PubMed  Google Scholar 

  309. Wang IJ, Lin YT, Yang YH, Chen CL, Tsai YH, Chiang BL, Hwang KC (2004) Correlation between age and allergens in pediatric atopic dermatitis. Ann Allergy Asthma Immunol 93:334–338

    PubMed  Google Scholar 

  310. Laske N, Niggemann B (2004) Does the severity of atopic dermatitis correlate with serum IgE levels? Pediatr Allergy Immunol 15:86–88

    PubMed  Google Scholar 

  311. Johnke H, Norberg LA, Vach W, Host A, Andersen KE (2006) Patterns of sensitization in infants and its relation to atopic dermatitis. Pediatr Allergy Immunol 17:591–600

    PubMed  Google Scholar 

  312. Wessels MW, Doekes G, Van Ieperen-Van Kijk AG, Koers WJ, Young E (1991) IgE antibodies to Pityrosporum ovale in atopic dermatitis. Br J Dermatol 125:227–232

    CAS  PubMed  Google Scholar 

  313. Leung DY, Harbeck R, Bina P, Reiser RF, Yang E, Norris DA, Hanifin JM, Sampson HA (1993) Presence of IgE antibodies to staphylococcal exotoxins on the skin of patients with atopic dermatitis. Evidence for a new group of allergens. J Clin Invest 92:1374–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  314. Morishita Y, Tada J, Sato A, Toi Y, Kanzaki H, Akiyama H, Arata J (1999) Possible influences of Staphylococcus aureus on atopic dermatitis—the colonizing features and the effects of staphylococcal enterotoxins. Clin Exp Allergy 29:1110–1117

    CAS  PubMed  Google Scholar 

  315. Bunikowski R, Mielke M, Skarabis H, Herz U, Bergmann RL, Wahn U, Renz H (1999) Prevalence and role of serum IgE antibodies to the Staphylococcus aureus-derived superantigens SEA and SEB in children with atopic dermatitis. J Allergy Clin Immunol 103:119–124

    CAS  PubMed  Google Scholar 

  316. Scalabrin DM, Bavbek S, Perzanowski MS, Wilson BB, Platts-Mills TA, Wheatley LM (1999) Use of specific IgE in assessing the relevance of fungal and dust mite allergens to atopic dermatitis: a comparison with asthmatic and nonasthmatic control subjects. J Allergy Clin Immunol 104:1273–1279

    CAS  PubMed  Google Scholar 

  317. Morita E, Hide M, Yoneya Y, Kannbe M, Tanaka A, Yamamoto S (1999) An assessment of the role of Candida albicans antigen in atopic dermatitis. J Dermatol 26:282–287

    CAS  PubMed  Google Scholar 

  318. Arzumanyan VG, Serdyuk OA, Kozlova NN, Basnak’yan IA, Fedoseeva VN (2003) IgE and IgG antibodies to Malassezia spp. yeast extract in patients with atopic dermatitis. Bull Exp Biol Med 135:460–463

    CAS  PubMed  Google Scholar 

  319. Novak N, Bieber T, Kraft S (2004) Immunoglobulin E-bearing antigen-presenting cells in atopic dermatitis. Curr Allergy Asthma Rep 4:263–269

    PubMed  Google Scholar 

  320. Clark RA, Adinoff AD (1989) Aeroallergen contact can exacerbate atopic dermatitis: patch tests as a diagnostic tool. J Am Acad Dermatol 21:863–869

    CAS  PubMed  Google Scholar 

  321. Pichery M, Mirey E, Mercier P, Lefrancais E, Dujardin A, Ortega N, Girard JP (2012) Endogenous IL-33 is highly expressed in mouse epithelial barrier tissues, lymphoid organs, brain, embryos, and inflamed tissues: in situ analysis using a novel Il-33-LacZ gene trap reporter strain. J Immunol 188:3488–3495

    CAS  PubMed  Google Scholar 

  322. Schmitz J, Owyang A, Oldham E, Song Y, Murphy E, McClanahan TK, Zurawski G, Moshrefi M, Qin J, Li X, Gorman DM, Bazan JF, Kastelein RA (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490

    CAS  PubMed  Google Scholar 

  323. Pushparaj PN, Tay HK, H’Ng SC, Pitman N, Xu D, McKenzie A, Liew FY, Melendez AJ (2009) The cytokine interleukin-33 mediates anaphylactic shock. Proc Natl Acad Sci U S A 106:9773–9778

    CAS  PubMed  PubMed Central  Google Scholar 

  324. Ohto-Ozaki H, Kuroiwa K, Mato N, Matsuyama Y, Hayakawa M, Tamemoto H, Tominaga S (2010) Characterization of ST2 transgenic mice with resistance to IL-33. Eur J Immunol 40:2632–2642

    CAS  PubMed  Google Scholar 

  325. Shimizu M, Matsuda A, Yanagisawa K, Hirota T, Akahoshi M, Inomata N, Ebe K, Tanaka K, Sugiura H, Nakashima K, Tamari M, Takahashi N, Obara K, Enomoto T, Okayama Y, Gao PS, Huang SK, Tominaga S, Ikezawa Z, Shirakawa T (2005) Functional SNPs in the distal promoter of the ST2 gene are associated with atopic dermatitis. Hum Mol Genet 14:2919–2927

    CAS  PubMed  Google Scholar 

  326. Savinko T, Matikainen S, Saarialho-Kere U, Lehto M, Wang G, Lehtimaki S, Karisola P, Reunala T, Wolff H, Lauerma A, Alenius H (2012) IL-33 and ST2 in atopic dermatitis: expression profiles and modulation by triggering factors. J Investig Dermatol 132:1392–1400

    CAS  PubMed  Google Scholar 

  327. Cevikbas F, Steinhoff M (2012) IL-33: a novel danger signal system in atopic dermatitis. J Investig Dermatol 132:1326–1329

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Ziegler SF, Artis D (2010) Sensing the outside world: TSLP regulates barrier immunity. Nat Immunol 11:289–293

    CAS  PubMed  PubMed Central  Google Scholar 

  329. Soumelis V, Reche PA, Kanzler H, Yuan W, Edward G, Homey B, Gilliet M, Ho S, Antonenko S, Lauerma A, Smith K, Gorman D, Zurawski S, Abrams J, Menon S, McClanahan T, de Waal-Malefyt RR, Bazan F, Kastelein RA, Liu YJ (2002) Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol 3:673–680

    CAS  PubMed  Google Scholar 

  330. Takai T (2012) TSLP expression: cellular sources, triggers, and regulatory mechanisms. Allergol Int 61:3–17

    CAS  PubMed  Google Scholar 

  331. Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A, Chartier S, Paquette N, Ziegler SF, Sarfati M, Delespesse G (2007) Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med 204:253–258

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Kato A, Favoreto S Jr, Avila PC, Schleimer RP (2007) TLR3- and Th2 cytokine-dependent production of thymic stromal lymphopoietin in human airway epithelial cells. J Immunol 179:1080–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  333. Futamura K, Orihara K, Hashimoto N, Morita H, Fukuda S, Sagara H, Matsumoto K, Tomita Y, Saito H, Matsuda A (2010) beta2-Adrenoceptor agonists enhance cytokine-induced release of thymic stromal lymphopoietin by lung tissue cells. Int Arch Allergy Immunol 152:353–361

    CAS  PubMed  Google Scholar 

  334. Xu G, Zhang L, Wang DY, Xu R, Liu Z, Han DM, Wang XD, Zuo KJ, Li HB (2010) Opposing roles of IL-17A and IL-25 in the regulation of TSLP production in human nasal epithelial cells. Allergy 65:581–589

    CAS  PubMed  Google Scholar 

  335. Zhu DD, Zhu XW, Jiang XD, Dong Z (2009) Thymic stromal lymphopoietin expression is increased in nasal epithelial cells of patients with mugwort pollen sensitive-seasonal allergic rhinitis. Chin Med J (Engl) 122:2303–2307

    Google Scholar 

  336. Kinoshita H, Takai T, Le TA, Kamijo S, Wang XL, Ushio H, Hara M, Kawasaki J, Vu AT, Ogawa T, Gunawan H, Ikeda S, Okumura K, Ogawa H (2009) Cytokine milieu modulates release of thymic stromal lymphopoietin from human keratinocytes stimulated with double-stranded RNA. J Allergy Clin Immunol 123:179–186

    CAS  PubMed  Google Scholar 

  337. Nonaka M, Fukumoto A, Ogihara N, Sakanushi A, Pawankar R, Yagi T (2010) Synergistic induction of thymic stromal lymphopoietin by tumor necrosis factor alpha and Th2 cytokine in nasal polyp fibroblasts. Am J Rhinol Allergy 24:e14–e18

    PubMed  Google Scholar 

  338. Bogiatzi SI, Fernandez I, Bichet JC, Marloie-Provost MA, Volpe E, Sastre X, Soumelis V (2007) Cutting edge: proinflammatory and Th2 cytokines synergize to induce thymic stromal lymphopoietin production by human skin keratinocytes. J Immunol 178:3373–3377

    CAS  PubMed  Google Scholar 

  339. Okayama Y, Okumura S, Sagara H, Yuki K, Sasaki T, Watanabe N, Fueki M, Sugiyama K, Takeda K, Fukuda T, Saito H, Ra C (2009) FcepsilonRI-mediated thymic stromal lymphopoietin production by interleukin-4-primed human mast cells. Eur Respir J 34:425–435

    CAS  PubMed  Google Scholar 

  340. Demehri S, Liu Z, Lee J, Lin MH, Crosby SD, Roberts CJ, Grigsby PW, Miner JH, Farr AG, Kopan R (2008) Notch-deficient skin induces a lethal systemic B-lymphoproliferative disorder by secreting TSLP, a sentinel for epidermal integrity. PLoS Biol 6:e123

    PubMed  PubMed Central  Google Scholar 

  341. Dumortier A, Durham AD, Di Piazza M, Vauclair S, Koch U, Ferrand G, Ferrero I, Demehri S, Song LL, Farr AG, Leonard WJ, Kopan R, Miele L, Hohl D, Finke D, Radtke F (2010) Atopic dermatitis-like disease and associated lethal myeloproliferative disorder arise from loss of Notch signaling in the murine skin. PLoS One 5:e9258

    PubMed  PubMed Central  Google Scholar 

  342. Li M, Hener P, Zhang Z, Kato S, Metzger D, Chambon P (2006) Topical vitamin D3 and low-calcemic analogs induce thymic stromal lymphopoietin in mouse keratinocytes and trigger an atopic dermatitis. Proc Natl Acad Sci U S A 103:11736–11741

    CAS  PubMed  PubMed Central  Google Scholar 

  343. Lee HC, Ziegler SF (2007) Inducible expression of the proallergic cytokine thymic stromal lymphopoietin in airway epithelial cells is controlled by NFkappaB. Proc Natl Acad Sci U S A 104:914–919

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Redhu NS, Saleh A, Halayko AJ, Ali AS, Gounni AS (2011) Essential role of NF-kappaB and AP-1 transcription factors in TNF-alpha-induced TSLP expression in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 300:L479–L485

    CAS  PubMed  Google Scholar 

  345. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    CAS  PubMed  Google Scholar 

  346. Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, Ziegler SF, Leonard WJ, Lodish HF (2000) Cloning of a receptor subunit required for signaling by thymic stromal lymphopoietin. Nat Immunol 1:59–64

    CAS  PubMed  Google Scholar 

  347. He R, Geha RS (2010) Thymic stromal lymphopoietin. Ann N Y Acad Sci 1183:13–24

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Comeau MR, Ziegler SF (2010) The influence of TSLP on the allergic response. Mucosal Immunol 3:138–147

    CAS  PubMed  Google Scholar 

  349. Tan C, Aziz MK, Lovaas JD, Vistica BP, Shi G, Wawrousek EF, Gery I (2010) Antigen-specific Th9 cells exhibit uniqueness in their kinetics of cytokine production and short retention at the inflammatory site. J Immunol 185:6795–6801

    CAS  PubMed  PubMed Central  Google Scholar 

  350. Veldhoen M, Uyttenhove C, van Snick J, Helmby H, Westendorf A, Buer J, Martin B, Wilhelm C, Stockinger B (2008) Transforming growth factor-beta ‘reprograms’ the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nat Immunol 9:1341–1346

    CAS  PubMed  Google Scholar 

  351. Dardalhon V, Awasthi A, Kwon H, Galileos G, Gao W, Sobel RA, Mitsdoerffer M, Strom TB, Elyaman W, Ho IC, Khoury S, Oukka M, Kuchroo VK (2008) IL-4 inhibits TGF-beta-induced Foxp3+ T cells and, together with TGF-beta, generates IL-9+ IL-10+ Foxp3(−) effector T cells. Nat Immunol 9:1347–1355

    CAS  PubMed  PubMed Central  Google Scholar 

  352. Ciprandi G, De Amici M, Giunta V, Marseglia A, Marseglia G (2013) Serum interleukin-9 levels are associated with clinical severity in children with atopic dermatitis. Pediatr Dermatol 30:222–225

    PubMed  Google Scholar 

  353. Barnes PJ (2008) Role of GATA-3 in allergic diseases. Curr Mol Med 8:330–334

    CAS  PubMed  Google Scholar 

  354. Maneechotesuwan K, Xin Y, Ito K, Jazrawi E, Lee KY, Usmani OS, Barnes PJ, Adcock IM (2007) Regulation of Th2 cytokine genes by p38 MAPK-mediated phosphorylation of GATA-3. J Immunol 178:2491–2498

    CAS  PubMed  Google Scholar 

  355. Pugliarello S, Cozzi A, Gisondi P, Girolomoni G (2011) Phenotypes of atopic dermatitis. J Dtsch Dermatol Ges 9:12–20

    PubMed  Google Scholar 

  356. Tanei R, Katsuoka K (2008) Clinical analyses of atopic dermatitis in the aged. J Dermatol 35:562–569

    PubMed  Google Scholar 

  357. Katsarou A, Armenaka M (2011) Atopic dermatitis in older patients: particular points. J Eur Acad Dermatol Venereol 25:12–18

    CAS  PubMed  Google Scholar 

  358. Bozek A, Fisher A, Filipowska B, Mazur B, Jarzab J (2012) Clinical features and immunological markers of atopic dermatitis in elderly patients. Int Arch Allergy Immunol 157:372–378

    CAS  PubMed  Google Scholar 

  359. Kim DW, Park JY, Na GY, Lee SJ, Lee WJ (2006) Correlation of clinical features and skin barrier function in adolescent and adult patients with atopic dermatitis. Int J Dermatol 45:698–701

    PubMed  Google Scholar 

  360. Sabin BR, Peters N, Peters AT (2012) Chapter 20: atopic dermatitis. Allergy Asthma Proc 33(Suppl 1):S67–S69

    PubMed  Google Scholar 

  361. McLean WH, Palmer CN, Henderson J, Kabesch M, Weidinger S, Irvine AD (2008) Filaggrin variants confer susceptibility to asthma. J Allergy Clin Immunol 121:1294–1295, author reply 1295-1296

    PubMed  Google Scholar 

  362. Tokura Y (2010) Extrinsic and intrinsic types of atopic dermatitis. J Dermatol Sci 58:1–7

    CAS  PubMed  Google Scholar 

  363. Wuthrich B, Schmid-Grendelmeier P (2003) The atopic eczema/dermatitis syndrome. Epidemiology, natural course, and immunology of the IgE-associated (“extrinsic”) and the nonallergic (“intrinsic”) AEDS. J Investig Allergol Clin Immunol 13:1–5

    CAS  PubMed  Google Scholar 

  364. Roguedas-Contios AM, Misery L (2011) What is intrinsic atopic dermatitis? Clin Rev Allergy Immunol 41:233–236

    PubMed  Google Scholar 

  365. Gottesman II, Gould TD (2003) The endophenotype concept in psychiatry: etymology and strategic intentions. Am J Psychiatry 160:636–645

    PubMed  Google Scholar 

  366. Lotvall J, Akdis CA, Bacharier LB, Bjermer L, Casale TB, Custovic A, Lemanske RF Jr, Wardlaw AJ, Wenzel SE, Greenberger PA (2011) Asthma endotypes: a new approach to classification of disease entities within the asthma syndrome. J Allergy Clin Immunol 127:355–360

    PubMed  Google Scholar 

  367. O’Neil SE, Lundback B, Lotvall J (2011) Proteomics in asthma and COPD phenotypes and endotypes for biomarker discovery and improved understanding of disease entities. J Proteome 75:192–201

    Google Scholar 

  368. Akdis CA, Bachert C, Cingi C, Dykewicz MS, Hellings PW, Naclerio RM, Schleimer RP, Ledford D (2013) Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J Allergy Clin Immunol 131:1479–1490

    PubMed  PubMed Central  Google Scholar 

  369. Xie M, Wenzel SE (2013) A global perspective in asthma: from phenotype to endotype. Chin Med J (Engl) 126:166–174

    Google Scholar 

  370. Heimall J, Spergel JM (2012) Filaggrin mutations and atopy: consequences for future therapeutics. Expert Rev Clin Immunol 8:189–197

    CAS  PubMed  Google Scholar 

  371. Carson CG, Rasmussen MA, Thyssen JP, Menne T, Bisgaard H (2012) Clinical presentation of atopic dermatitis by filaggrin gene mutation status during the first 7 years of life in a prospective cohort study. PLoS One 7:e48678

    CAS  PubMed  PubMed Central  Google Scholar 

  372. Mori T, Ishida K, Mukumoto S, Yamada Y, Imokawa G, Kabashima K, Kobayashi M, Bito T, Nakamura M, Ogasawara K, Tokura Y (2010) Comparison of skin barrier function and sensory nerve electric current perception threshold between IgE-high extrinsic and IgE-normal intrinsic types of atopic dermatitis. Br J Dermatol 162:83–90

    CAS  PubMed  Google Scholar 

  373. Kabashima-Kubo R, Nakamura M, Sakabe J, Sugita K, Hino R, Mori T, Kobayashi M, Bito T, Kabashima K, Ogasawara K, Nomura Y, Nomura T, Akiyama M, Shimizu H, Tokura Y (2012) A group of atopic dermatitis without IgE elevation or barrier impairment shows a high Th1 frequency: possible immunological state of the intrinsic type. J Dermatol Sci 67:37–43

    CAS  PubMed  Google Scholar 

  374. Casagrande BF, Fluckiger S, Linder MT, Johansson C, Scheynius A, Crameri R, Schmid-Grendelmeier P (2006) Sensitization to the yeast Malassezia sympodialis is specific for extrinsic and intrinsic atopic eczema. J Investig Dermatol 126:2414–2421

    PubMed  Google Scholar 

  375. Tang TS, Bieber T, Williams HC (2012) Does “autoreactivity” play a role in atopic dermatitis? J Allergy Clin Immunol 129(1209–1215):e1202

    Google Scholar 

  376. Park CO, Lee HJ, Lee JH, Wu WH, Chang NS, Hua L, Lee MG, Lee KH (2008) Increased expression of CC chemokine ligand 18 in extrinsic atopic dermatitis patients. Exp Dermatol 17:24–29

    CAS  PubMed  Google Scholar 

  377. Mori T, Kabashima K, Yoshiki R, Sugita K, Shiraishi N, Onoue A, Kuroda E, Kobayashi M, Yamashita U, Tokura Y (2008) Cutaneous hypersensitivities to hapten are controlled by IFN-gamma-upregulated keratinocyte Th1 chemokines and IFN-gamma-downregulated Langerhans cell Th2 chemokines. J Investig Dermatol 128:1719–1727

    CAS  PubMed  Google Scholar 

  378. Miyahara H, Okazaki N, Nagakura T, Korematsu S, Izumi T (2011) Elevated umbilical cord serum TARC/CCL17 levels predict the development of atopic dermatitis in infancy. Clin Exp Allergy 41:186–191

    CAS  PubMed  Google Scholar 

  379. Nakamura T, Sekigawa I, Ogasawara H, Mitsuishi K, Hira K, Ikeda S, Ogawa H (2006) Expression of DNMT-1 in patients with atopic dermatitis. Arch Dermatol Res 298:253–256

    CAS  PubMed  Google Scholar 

  380. Kuwabara N, Kondo N, Fukutomi O, Fujii H, Orii T (1995) Methylation patterns of I epsilon region in B cells stimulated with interleukin 4 and Epstein-Barr virus in patients with a high level of serum IgE. Eur J Immunogenet 22:265–275

    CAS  PubMed  Google Scholar 

  381. Liang Y, Wang P, Zhao M, Liang G, Yin H, Zhang G, Wen H, Lu Q (2012) Demethylation of the FCER1G promoter leads to FcepsilonRI overexpression on monocytes of patients with atopic dermatitis. Allergy 67:424–430

    CAS  PubMed  Google Scholar 

  382. Liu J, Ballaney M, Al-alem U, Quan C, Jin X, Perera F, Chen LC, Miller RL (2008) Combined inhaled diesel exhaust particles and allergen exposure alter methylation of T helper genes and IgE production in vivo. Toxicol Sci 102:76–81

    CAS  PubMed  PubMed Central  Google Scholar 

  383. Su RC, Becker AB, Kozyrskyj AL, Hayglass KT (2008) Epigenetic regulation of established human type 1 versus type 2 cytokine responses. J Allergy Clin Immunol 121(57–63):e53

    Google Scholar 

  384. Bushati N, Cohen SM (2007) microRNA functions. Annu Rev Cell Dev Biol 23:175–205

    CAS  PubMed  Google Scholar 

  385. O’Connell RM, Rao DS, Baltimore D (2012) microRNA regulation of inflammatory responses. Annu Rev Immunol 30:295–312

    PubMed  Google Scholar 

  386. Sonkoly E, Wei T, Janson PC, Saaf A, Lundeberg L, Tengvall-Linder M, Norstedt G, Alenius H, Homey B, Scheynius A, Stahle M, Pivarcsi A (2007) MicroRNAs: novel regulators involved in the pathogenesis of psoriasis? PLoS One 2:e610

    PubMed  PubMed Central  Google Scholar 

  387. Sonkoly E, Janson P, Majuri ML, Savinko T, Fyhrquist N, Eidsmo L, Xu N, Meisgen F, Wei T, Bradley M, Stenvang J, Kauppinen S, Alenius H, Lauerma A, Homey B, Winqvist O, Stahle M, Pivarcsi A (2010) MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte-associated antigen 4. J Allergy Clin Immunol 126:581–589, e581-520

    CAS  PubMed  Google Scholar 

  388. Herberth G, Bauer M, Gasch M, Hinz D, Roder S, Olek S, Kohajda T, Rolle-Kampczyk U, von Bergen M, Sack U, Borte M, Lehmann I (2013) Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol 133(2):543–550

    PubMed  Google Scholar 

  389. Yoon WS, Lee SS, Chae YS, Park YK (2011) Therapeutic effects of recombinant Salmonella typhimurium harboring CCL22 miRNA on atopic dermatitis-like skin in mice. Exp Mol Med 43:63–70

    CAS  PubMed  PubMed Central  Google Scholar 

  390. Yoon WS, Ryu SR, Lee SS, Chae YS, Kim EJ, Choi JH, Oh S, Park SH, Choung JT, Yoo Y, Park YK (2012) Suppression of inflammation by recombinant Salmonella typhimurium harboring CCL22 microRNA. DNA Cell Biol 31:290–297

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christopher Chang or Jianzhong Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mu, Z., Zhao, Y., Liu, X. et al. Molecular Biology of Atopic Dermatitis. Clinic Rev Allerg Immunol 47, 193–218 (2014). https://doi.org/10.1007/s12016-014-8415-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12016-014-8415-1

Keywords

Navigation