Skip to main content
Log in

Mouse Bone Marrow VSELs Exhibit Differentiation into Three Embryonic Germ Lineages and Germ & Hematopoietic Cells in Culture

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Very small embryonic-like stem cells (VSELs) have been reported in various adult tissues, express pluripotent and primordial germ cells (PGCs) specific markers, are mobilized under stress/disease conditions, give rise to tissue committed progenitors and thus help regenerate and maintain homeostasis. The aim of the present study was to evaluate in vitro differentiation potential of VSELs using a quantitative approach. VSELs were collected from mouse bone marrow after 4 days of 5-fluorouracil (5-FU, 150 mg/Kg) treatment, further enriched by size based filtration and cultured on a feeder support in the presence of specific differentiation media. Cultured VSELs were found to differentiate into all three embryonic germ cell lineages, germ and hematopoietic cells after 14 days in culture. This was confirmed by studying Nestin, PDX-1, NKX2.5, DAZL, CD45 and other markers expression by various approaches. Very small, CD45 negative cells collected and enriched from GFP positive 5-FU treated mice bone marrow transitioned into CD45 positive cells in vitro thus demonstrating that VSELs can give rise to hematopoietic stem cells (HSCs). We envision that VSELs may be responsible for plasticity and ability of bone marrow cells to give rise to non-hematopoietic tissue progenitors of all 3 germ layers. Moreover the ability of VSELs to differentiate into germ cells as well as all the three lineages provides further evidence to support their pluripotent state and confirms developmental link between bone marrow VSELs and PGCs. The property of quiescence, no risk of teratoma formation and autologus source, make pluripotent VSELs a potential candidate to facilitate endogenous regeneration compared to cell replacement strategy envisioned using embryonic and induced pluripotent stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tabar, V., & Studer, L. (2014). Pluripotent stem cells in regenerative medicine: challenges and recent progress. Nature Review of Genetics, 15(2), 82–92.

    Article  CAS  Google Scholar 

  2. Yoshihara, M., Hayashizaki, Y., & Murakawa, Y. (2016). Genomic instability of iPSCs: challenges towards their clinical applications. Stem Cell Reviews. doi:10.1007/s12015-016-9680-6.

    PubMed Central  Google Scholar 

  3. Tapia, N., & Schöler, H. R. (2016). Molecular obstacles to clinical translation of iPSCs. Cell Stem Cell, 19(3), 298–309.

    Article  CAS  PubMed  Google Scholar 

  4. Kang, E., Wang, X., Tippner-Hedges, R., et al. (2016). Age-related accumulation of somatic mitochondrial DNA mutations in adult-derived human iPSCs. Cell Stem Cell, 18(5), 625–636.

    Article  CAS  PubMed  Google Scholar 

  5. Reardon, S. (2016). Mutated mitochondria could hold back stem-cell therapies. Nature. doi:10.1038/nature.2016.19752.

    Google Scholar 

  6. Vassena, R., Eguizabal, C., Heindryckx, B., et al. (2015). Stem cells in reproductive medicine: ready for the patient? Human Reproduction, 30(9), 2014–2021.

    Article  CAS  PubMed  Google Scholar 

  7. Hendriks, S., Dancet, E. A., van Pelt, A. M., et al. (2015). Artificial gametes: a systematic review of biological progress towards clinical application. Human Reproduction Update, 21, 285–296.

    Article  PubMed  Google Scholar 

  8. Kucia, M., Reca, R., Campbell, F. R., et al. (2006). A population of very small embryonic-like (VSEL) CXCR4 (+) SSEA-1(+) Oct-4+ stem cells identified in adult bone marrow. Leukemia, 20(5), 857–869.

    Article  CAS  PubMed  Google Scholar 

  9. Ratajczak, M., Ratajczak, J., Suszynska, M., et al. (2016) A novel view of the adult stem cell compartment from the perspective of a quiescent population of very small embryonic-like stem cells. Circulatory Research, Article in press.

  10. Bhartiya, D., Shaikh, A., Anand, S., et al. (2016). Endogenous, very small embryonic-like stem cells: critical review, therapeutic potential and a look ahead. Human Reproduction Update, 23(1), 41–76.

  11. Havens, A. M., Sun, H., Shiozawa, Y., et al. (2014). Human and murine very small embryonic-like cells represent multipotent tissue progenitors, in vitro and in vivo. Stem Cells Development, 23(7), 689–701.

    Article  PubMed  Google Scholar 

  12. Ratajczak, J., Wysoczynski, M., Zuba-Surma, E., et al. (2011). Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after co-culture over OP9 stromal cells. Experimental Hematology, 39(2), 225–237.

    Article  CAS  PubMed  Google Scholar 

  13. Ratajczak, J., Zuba-Surma, E., Klich, I., et al. (2011). Hematopoietic differentiation of umbilical cord blood-derived very small embryonic/epiblast-like stem cells. Leukemia, 25(8), 1278–1285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parte, S., Bhartiya, D., Telang, J., et al. (2011). Detection, characterization, and spontaneous differentiation in vitro of very small embryonic-like putative stem cells in adult mammalian ovary. Stem Cells Development, 20(8), 1451–1464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Virant-Klun, I., Rozman, P., Cvjeticanin, B., et al. (2009). Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Development, 18(1), 137–49.

  16. Anand, S., Patel, H., & Bhartiya, D. (2015). Chemoablated mouse seminiferous tubular cells enriched for very small embryonic-like stem cells undergo spontaneous spermatogenesis in vitro. Reproductive Biology and Endocrinology, 13, 33–43.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen, Z. H., Lv, X., Dai, H., et al. (2015). Hepatic regenerative potential of mouse bone marrow very small embryonic-like stem cells. Journal of Cellular Physiology, 230, 1852–1861.

    Article  CAS  PubMed  Google Scholar 

  18. Wojakowski, W., Tendera, M., Kucia, M., et al. (2010). Cardiomyocyte differentiation of bone marrow-derived Oct-4 + CXCR4 + SSEA-1+ very small embryonic-likestem cells. International Journal of Oncology, 37(2), 237–247.

    CAS  PubMed  Google Scholar 

  19. Lee, S. J., Park, S. H., Kim, Y. I., et al. (2014). Adult stem cells from the hyaluronic acid-rich node and duct system differentiate into neuronal cells and repair brain injury. Stem Cells Development, 23(23), 2831–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dawn, B., Tiwari, S., Kucia, M. J., et al. (2008). Transplantation of bone marrow-derived very small embryonic-like stem cells attenuates left ventricular dysfunction and remodeling after myocardial infarction. Stem Cells, 26, 1646–1655.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zuba-Surma, E. K., Kucia, M., Dawn, B., et al. (2008). Bone marrow derived pluripotent very small embryonic-like stem cells (VSELs) are mobilized after acute myocardial infarction. Journal of Molecular and Cellular Cardiology, 44(5), 865–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abdel-Latif, A., Zuba-Surma, E. K., Ziada, K. M., et al. (2010). Evidence of mobilization of pluripotent stem cells into peripheral blood of patients with myocardial ischemia. Experimental Hematology, 38(12), 1131–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Wojakowski, W., Tendera, M., Kucia, M., et al. (2009). Mobilization of bone marrow-derived Oct-4+ SSEA-4+ very small embryonic-like stem cells in patients with acute myocardial infarction. Journal of American College of Cardiology, 53, 1–9.

    Article  CAS  Google Scholar 

  24. Paczkowska, E., Kucia, M., Koziarska, D., et al. (2009). Clinical evidence that very small embryonic-like stem cells are mobilized into peripheral blood in patients after stroke. Stroke, 40, 1237–1244.

    Article  CAS  PubMed  Google Scholar 

  25. Bhartiya, D., Mundekar, A., Mahale, V., et al. (2014). Very small embryonic-like stem cells are involved in regeneration of mouse pancreas post-pancreatectomy. Stem Cell Research and Therapy, 5, 106–117.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Parker, G. C. (2014). Very small embryonic-like stem cells: a scientific debate? Stem Cells Development, 23(7), 687–688.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Kassmer, S. H., Jin, H., Zhang, P. X., et al. (2013). Very small embryonic-like stem cells from the murine bone marrow differentiate into epithelial cells of the lung. Stem Cells, 31, 2759–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Drukała, J., Paczkowska, E., Kucia, M., et al. (2012). Stem cells, including a population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients after skin burn injury. Stem Cell Review, 8, 184–194.

    Article  Google Scholar 

  29. Shaikh, A., Bhartiya, D., Kapoor, S., et al. (2016). Delineating the effects of 5-fluorouracil and follicle-stimulating hormone on mouse bone marrow stem/progenitor cells. Stem Cell Research and Therapy, 7(1), 59.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Anand, S., Bhartiya, D., Sriraman, K., et al. (2014). Very small embryonic-like stem cells survive and restore spermatogenesis after busulphan treatment in mouse testis. Journal of Stem Cell Research and Therapeutics. doi:10.4172/2157-7633.1000216.

    Google Scholar 

  31. Anand, S., Bhartiya, D., Sriraman, K., et al. (2016). Underlying mechanisms that restore spermatogenesis on transplanting healthy niche cells in busulphan treated mouse testis. Stem Cell Reviews and Reports, 12(6), 682–697.

    Article  CAS  PubMed  Google Scholar 

  32. Taichman, R. S., Wang, Z., Shiozawa, Y., et al. (2010). Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Development, 19(10), 1557–1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dulak, J., Szade, K., Szade, A., et al. (2015). Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochimica Polonica, 62(3), 329–337.

    Article  CAS  PubMed  Google Scholar 

  34. Kucia, M., Wysoczynski, M., Wu, W., et al. (2008). Evidence that very small embryonic like (VSEL) stem cells are mobilized into peripheral blood. Stem Cells, 26(8), 2083–2092.

    Article  CAS  PubMed  Google Scholar 

  35. Gharib, S. A., Dayyat, E. A., Khalyfa, A., et al. (2010). Intermittent hypoxia mobilizes bone marrow derived very small embryonic-like stem cells and activates developmental transcriptional programs in mice. Sleep, 33(11), 1439–1446.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Marlicz, W., Zuba-Surma, E., Kucia, M., et al. (2012). Various types of stem cells, including population of very small embryonic-like stem cells, are mobilized into peripheral blood in patients with Crohn’s disease. Inflammatory Bowel Disorder, 18(9), 1711–1722.

    Article  Google Scholar 

  37. Guerin, C. L., Loyer, X., Vilar, J., et al. (2015). Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential. Thrombosis Haemostasis, 113(5), 1084–1094.

    Article  PubMed  Google Scholar 

  38. Abbott, A. (2013). Doubt cast over tiny stem cells. Nature. doi:10.1038/499390a.

    PubMed Central  Google Scholar 

  39. Ratajczak, M. Z., Zuba-Surma, E., Wojakowski, W., et al. (2014). Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate. Leukemia, 28(3), 473–484.

    Article  CAS  PubMed  Google Scholar 

  40. Shaikh, A., Nagvenkar, P., Pethe, P., et al. (2015). Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood. Leukemia, 29(9), 1909–1917.

    Article  CAS  PubMed  Google Scholar 

  41. Bhartiya, D., Kasiviswanathan, S., Unni, S. K., et al. (2010). Newer insights into premeiotic development of germ cells in adult human testis using Oct-4 as a stem cell marker. Journal of Histochemistry and Cytochemistry, 58(12), 1093–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Patel, H., & Bhartiya, D. (2016). Testicular stem cells express follicle stimulating hormone receptors and are directly modulated by FSH. Reproductive Sciences, 23(11), 1493–1508.

    Article  PubMed  Google Scholar 

  43. Patel, H., Bhartiya, D., Parte, S., et al. (2013). Follicle stimulating hormone modulates ovarian stem cells through alternately spliced receptor variant FSH-R3. Journal of Ovarian Research, 6, 52–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sriraman, K., Bhartiya, D., Anand, S., et al. (2015). Mouse ovarian very small embryonic-like stem cells resist chemotherapy and retain ability to initiate oocyte-specific differentiation. Reproductive Sciences, 22(7), 884–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gunjal, P., Bhartiya, D., Metkari, S., et al. (2015). Very small embryonic-like stem cells are the elusive mouse endometrial stem cells--a pilot study. Journal of Ovarian Research, 11(8), 9–23.

    Article  Google Scholar 

  46. Soleimani, M., & Nadri, S. (2009). A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nature Protocols, 4(1), 102–106.

    Article  CAS  PubMed  Google Scholar 

  47. Lynch, M. R., Gasson, J. C., & Paz, H. (2011). Modified ES / OP9 co-culture protocol provides enhanced characterization of hematopoietic progeny. Journal of Visualised Experiments. doi:10.3791/2559.

    Google Scholar 

  48. Georgopoulos, K., Winandy, S., & Avitahl, N. (1997). The role of the Ikaros gene in lymphocyte development and homeostasis. Annual Review of Immunology, 15, 155–176.

    Article  CAS  PubMed  Google Scholar 

  49. Kassmer, S. H., Bruscia, E. M., Zhang, P. X., et al. (2012). Non-hematopoietic cells are the primary source of bone marrow-derived lung epithelial cells. StemCells, 30(3), 491–499.

    CAS  Google Scholar 

  50. Shin, D. M., Liu, R., Wu, W., et al. (2012). Global gene expression analysis of very small embryonic-like stem cells reveals that the Ezh2-dependent bivalent domain mechanism contributes to their pluripotent state. Stem Cells Development, 21(10), 1639–1652.

    Article  CAS  PubMed  Google Scholar 

  51. Bhartiya, D., Shaikh, A., Nagvenkar, P., et al. (2012). Very small embryonic-like stem cells with maximum regenerative potential get discarded during cord blood banking and bone marrow processing for autologous stem cell therapy. Stem Cells Development, 21(1), 1–6.

    Article  CAS  PubMed  Google Scholar 

  52. Bhartiya, D., Anand, S., & Parte, S. (2015). VSELs may obviate cryobanking of gonadal tissue in cancer patients for fertility preservation. Journal of Ovarian Research, 17(8), 75–82.

    Article  Google Scholar 

  53. Zhou, Q., Wang, M., Yuan, Y., et al. (2016). Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell, 18(3), 330–340.

    Article  CAS  PubMed  Google Scholar 

  54. Nishihara, S. (2016). Glycans define the stemness of naïve and primed pluripotent stem cells. Glycoconjugate Journal. doi:10.1007/s10719-016-9740-9.

  55. Honda, A., Hatori, M., Hirose, M., et al. (2013). Naive-like conversion overcomes the limited differentiation capacity of induced pluripotent stem cells. Journal of Biological Chemisry, 288(36), 26157–26166.

    Article  CAS  Google Scholar 

  56. Johnson, J., Bagley, J., Skaznik-Wikiel, M., et al. (2005). Oocyte generation in adult mammalian ovaries by putative germ cells in bone marrow and peripheral blood. Cell, 122(2), 303–315.

    Article  CAS  PubMed  Google Scholar 

  57. Nayernia, K., Lee, J. H., Drusenheimer, N., et al. (2006). Derivation of male germ cells from bone marrow stem cells. Laboratory Investigation, 86(7), 654–663.

    Article  CAS  PubMed  Google Scholar 

  58. Shin, D. M., Liu, R., Klich, I., et al. (2010). Molecular signature of adult bone marrow-purified very small embryonic-like stem cells supports their developmental epiblast/germ line origin. Leukemia, 24(8), 1450–1461.

    Article  CAS  PubMed  Google Scholar 

  59. Mierzejewska, K., Borkowska, S., Suszynska, E., et al. (2015). Hematopoietic stem/progenitor cells express several functional sex hormone receptors-novel evidence for a potential developmental link between hematopoiesis and primordial germ cells. Stem Cells Development, 24(8), 927–937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Gayatri Shinde and Sushma Khavale for their help in carrying out flow cytometry studies and to Shobha Sonawane and Reshma Gaonkar for their help with confocal studies. We acknowledge University Grants Commission (UGC), Government of India, New Delhi for support towards a doctoral program of AS. RG acknowledges Department of Science and Technology, Government of India under Woman Scientist Scheme-A [SR/WOSA/LS-1318] for fellowship.

NIRRH Accession No RA 373/05-2016.

Financial support for the study was provided by Indian Council of Medical Research, Government of India, New Delhi, INDIA.

Author Contributions

AS: Conception and design of the study, data collection, analysis and interpretation, manuscript writing. SA: Conception and design of the study, data collection, analysis and interpretation, manuscript writing. SK: Data collection, analysis, and interpretation, manuscript writing. DB: Conception and design of the study, data analysis and interpretation, manuscript writing. All authors read and approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepa Bhartiya.

Ethics declarations

Authors declare no potential conflict of interest.

Competing Interests

Authors declare that they have no competing interest.

Additional information

Ambreen Shaikh, Sandhya Anand and Sona Kapoor equally contributed to the work

Electronic supplementary material

ESM 1

(PDF 10.6 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, A., Anand, S., Kapoor, S. et al. Mouse Bone Marrow VSELs Exhibit Differentiation into Three Embryonic Germ Lineages and Germ & Hematopoietic Cells in Culture. Stem Cell Rev and Rep 13, 202–216 (2017). https://doi.org/10.1007/s12015-016-9714-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-016-9714-0

Keywords

Navigation