Skip to main content
Log in

Intrinsically Disordered Regions in Serum Albumin: What Are They For?

  • Review Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

Serum albumin is a major plasma protein in mammalian blood. The importance of this protein lies in its roles in both bioregulation and transport phenomena. Serum albumin binds various metal ions and participates in the transport and storage of fatty acids, bilirubin, steroids amino acids, and many other ligands, usually with regions of hydrophobic surface. Although the primary role of serum albumin is to transport various ligand, its versatile binding capacities and high concentration mean that it can assume a number of additional functions. The major goal of this article is to show how intrinsic disorder is encoded in the amino acid sequence of serum albumin, and how intrinsic disorder is related to functions of this important serum protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kratz, F. (2008). Albumin as a drug carrier: Design of prodrugs, drug conjugates and nanoparticles. Journal of Controlled Release, 132(3), 171–183.

    Article  CAS  PubMed  Google Scholar 

  2. Peters, Jr., T. (1996). All about albumin: Biochemistry, genetics, and medical applications. San Diego, CA: Academic.

    Google Scholar 

  3. Garcovich, M., Zocco, M. A., & Gasbarrini, A. (2009). Clinical use of albumin in hepatology. Blood Transfus, 7(4), 268–277.

    PubMed  PubMed Central  Google Scholar 

  4. Anderson, C. L., Chaudhury, C., Kim, J., Bronson, C. L., Wani, M. A., & Mohanty, S. (2006). Perspective—FcRn transports albumin: Relevance to immunology and medicine. Trends in Immunology, 27(7), 343–348.

    Article  CAS  PubMed  Google Scholar 

  5. Kim, J., Hayton, W. L., Robinson, J. M., & Anderson, C. L. (2007). Kinetics of FcRn-mediated recycling of IgG and albumin in human: Pathophysiology and therapeutic implications using a simplified mechanism-based model. Clinical Immunology, 122(2), 146–155.

    Article  CAS  PubMed  Google Scholar 

  6. Sleep, D., Cameron, J., & Evans, L. R. (2013). Albumin as a versatile platform for drug half-life extension. Biochimica et biophysica acta, 1830(12), 5526–5534.

    Article  CAS  PubMed  Google Scholar 

  7. Peters, Jr., T. (1985). Serum albumin. Advances in Protein Chemistry, 37, 161–245.

    Article  CAS  PubMed  Google Scholar 

  8. Guillaume, Y. C., Guinchard, C., & Berthelot, A. (2000). Affinity chromatography study of magnesium and calcium binding to human serum albumin: pH and temperature variations. Talanta, 53(3), 561–569.

    Article  CAS  PubMed  Google Scholar 

  9. Lu, J., Stewart, A. J., Sadler, P. J., Pinheiro, T. J., & Blindauer, C. A. (2008). Albumin as a zinc carrier: Properties of its high-affinity zinc-binding site. Biochemical Society Transactions, 36(Pt 6), 1317–1321.

    Article  CAS  PubMed  Google Scholar 

  10. Sitar, M. E., Aydin, S., & Cakatay, U. (2013). Human serum albumin and its relation with oxidative stress. Clinical Laboratory, 59(9-10), 945–952.

    CAS  PubMed  Google Scholar 

  11. Masuoka, J., Hegenauer, J., Vandyke, B. R., & Saltman, P. (1993). Intrinsic stoichiometric equilibrium-constants for the binding of zinc(Ii) and Copper(Ii) to the high-affinity site of serum-albumin. Journal of Biological Chemistry, 268(29), 21533–21537.

    CAS  PubMed  Google Scholar 

  12. Masuoka, J., & Saltman, P. (1994). Zinc(Ii) and copper(Ii) binding to serum-albumin—A comparative-study of dog, bovine, and human albumin. Journal of Biological Chemistry, 269(41), 25557–25561.

    CAS  PubMed  Google Scholar 

  13. Martins, E. O., & Drakenberg, T. (1982). Cadmium(Ii), zinc(Ii), and copper(Ii) ions binding to bovine serum-albumin—A Cd-113 NMR-study. Inorganica Chimica Acta-Bioinorganic, 67(2), 71–74.

    Article  CAS  Google Scholar 

  14. He, X. M., & Carter, D. C. (1992). Atomic structure and chemistry of human serum albumin. Nature, 358(6383), 209–215.

    Article  CAS  PubMed  Google Scholar 

  15. Weisberg, H. F. (1978). Osmotic pressure of the serum proteins. Annals of Clinical Laboratory Science, 8(2), 155–164.

    CAS  PubMed  Google Scholar 

  16. Klammt, S., Wojak, H. J., Mitzner, A., Koball, S., Rychly, J., Reisinger, E. C., & Mitzner, S. (2012). Albumin-binding capacity (ABiC) is reduced in patients with chronic kidney disease along with an accumulation of protein-bound uraemic toxins. Nephrology Dialysis Transplantation, 27(6), 2377–2383.

    Article  CAS  Google Scholar 

  17. Roche, M., Rondeau, P., Singh, N. R., Tarnus, E., & Bourdon, E. (2008). The antioxidant properties of serum albumin. FEBS Letters, 582(13), 1783–1787.

    Article  CAS  PubMed  Google Scholar 

  18. Taverna, M., Marie, A.-L., Mira, J.-P., & Guidet, B. (2013). Specific antioxidant properties of human serum albumin. Annals of Intensive Care, 3, 4–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Young, I. S., & Woodside, J. V. (2001). Antioxidants in health and disease. Journal of Clinical Pathology, 54(3), 176–186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Oettl, K., & Stauber, R. E. (2007). Physiological and pathological changes in the redox state of human serum albumin critically influence its binding properties. British Journal of Pharmacology, 151(5), 580–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Stamler, J. S., Jaraki, O., Osborne, J., Simon, D. I., Keaney, J., Vita, J., Singel, D., Valeri, C. R., & Loscalzo, J. (1992). Nitric oxide circulates in mammalian plasma primarily as an S-nitroso adduct of serum albumin. Proceedings of the National Academy of Sciences of the United States of America, 89(16), 7674–7677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Biere, A. L., Ostaszewski, B., Stimson, E. R., Hyman, B. T., Maggio, J. E., & Selkoe, D. J. (1996). Amyloid β-peptide is transported on lipoproteins and albumin in human plasma. Journal of Biological Chemistry, 271(51), 32916–32922.

    Article  CAS  PubMed  Google Scholar 

  23. Boada, M., Ortiz, P., Anaya, F., Hernández, I., Muñoz, J., Núñez, L., Olazarán, J., Roca, I., Cuberas, G., Tárraga, L., Buendia, M., Pla, R. P., Ferrer, I., & Páez, A. (2009). Amyloid-targeted therapeutics in Alzheimer’s disease: Use of human albumin in plasma exchange as a novel approach for Abeta mobilization. Drug News and Perspectives, 22(6), 325–339.

    Article  CAS  PubMed  Google Scholar 

  24. Dubois, M. J., Orellana-Jimenez, C., Melot, C., De Backer, D., Berre, J., Leeman, M., Brimioulle, S., Appoloni, O., Creteur, J., & Vincent, J. L. (2006). Albumin administration improves organ function in critically ill hypoalbuminemic patients: A prospective, randomized, controlled, pilot study. Critical Care Medicine, 34(10), 2536–2540.

    Article  CAS  PubMed  Google Scholar 

  25. Caironi, P., & Gattinoni, L. (2009). The clinical use of albumin: The point of view of a specialist in intensive care. Blood Transfus, 7(4), 259–267.

    PubMed  PubMed Central  Google Scholar 

  26. Dunker, A. K., Lawson, J. D., Brown, C. J., Williams, R. M., Romero, P., Oh, J. S., Oldfield, C. J., Campen, A. M., Ratliff, C. M., Hipps, K. W., Ausio, J., Nissen, M. S., Reeves, R., Kang, C., Kissinger, C. R., Bailey, R. W., Griswold, M. D., Chiu, W., Garner, E. C., & Obradovic, Z. (2001). Intrinsically disordered protein. Journal of Molecular Graphics & Modelling, 19(1), 26–59.

    Article  CAS  Google Scholar 

  27. Wright, P. E., & Dyson, H. J. (1999). Intrinsically unstructured proteins: Re-assessing the protein structure-function paradigm. Journal of Molecular Biology, 293(2), 321–331.

    Article  CAS  PubMed  Google Scholar 

  28. Uversky, V. N., Gillespie, J. R., & Fink, A. L. (2000). Why are “natively unfolded” proteins unstructured under physiologic conditions? Proteins, 41(3), 415–427.

    Article  CAS  PubMed  Google Scholar 

  29. Tompa, P. (2002). Intrinsically unstructured proteins. Trends in Biochemical Sciences, 27(10), 527–533.

    Article  CAS  PubMed  Google Scholar 

  30. Uversky, V. N., & Dunker, A. K. (2010). Understanding protein non-folding. Biochimica et biophysica acta, 1804(6), 1231–1264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tompa, P. (2012). Intrinsically disordered proteins: A 10-year recap. Trends in Biochemical Sciences, 37(12), 509–516.

    Article  CAS  PubMed  Google Scholar 

  32. Uversky, V. N. (2013). A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Science, 22(6), 693–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Lee, R., Buljan, M., Lang, B., Weatheritt, R. J., Daughdrill, G. W., Dunker, A. K., Fuxreiter, M., Gough, J., Gsponer, J., Jones, D. T., Kim, P. M., Kriwacki, R. W., Oldfield, C. J., Pappu, R. V., Tompa, P., Uversky, V. N., Wright, P. E., & Babu, M. M. (2014). Classification of intrinsically disordered regions and proteins. Chemical Reviews, 114(13), 6589–6631.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Habchi, J., Tompa, P., Longhi, S., & Uversky, V. N. (2014). Introducing protein intrinsic disorder. Chemical Reviews, 114(13), 6561–6588.

    Article  CAS  PubMed  Google Scholar 

  35. Oldfield, C. J., & Dunker, A. K. (2014). Intrinsically disordered proteins and intrinsically disordered protein regions. Annual Review of Biochemistry, 83, 553–584.

    Article  CAS  PubMed  Google Scholar 

  36. Uversky, V. N. (2016). Dancing protein clouds: The strange biology and chaotic physics of intrinsically disordered proteins. The Journal of Biological Chemistry, 291(13), 6681–6688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dunker, A. K., Brown, C. J., Lawson, J. D., Iakoucheva, L. M., & Obradovic, Z. (2002). Intrinsic disorder and protein function. Biochemistry, 41(21), 6573–6582.

    Article  CAS  PubMed  Google Scholar 

  38. Dunker, A. K., Brown, C. J., & Obradovic, Z. (2002). Identification and functions of usefully disordered proteins. Advances in Protein Chemistry, 62, 25–49.

    Article  CAS  PubMed  Google Scholar 

  39. Uversky, V. N. (2002). Natively unfolded proteins: A point where biology waits for physics. Protein Science, 11(4), 739–756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Uversky, V. N. (2002). What does it mean to be natively unfolded? European Journal of Biochemistry, 269(1), 2–12.

    Article  CAS  PubMed  Google Scholar 

  41. Uversky, V. N. (2003). Protein folding revisited. A polypeptide chain at the folding-misfolding-nonfolding cross-roads: Which way to go? Cellular and Molecular Life Sciences, 60(9), 1852–1871.

    Article  CAS  PubMed  Google Scholar 

  42. Uversky, V. N. (2013). A decade and a half of protein intrinsic disorder: Biology still waits for physics. Protein Science, 22(6), 693–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Uversky, V. N. (2015). Functional roles of transiently and intrinsically disordered regions within proteins. The FEBS Journal, 282(7), 1182–1189.

    Article  CAS  PubMed  Google Scholar 

  44. Iakoucheva, L. M., Radivojac, P., Brown, C. J., O’Connor, T. R., Sikes, J. G., Obradovic, Z., & Dunker, A. K. (2004). The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Research, 32(3), 1037–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pejaver, V., Hsu, W. L., Xin, F., Dunker, A. K., Uversky, V. N., & Radivojac, P. (2014). The structural and functional signatures of proteins that undergo multiple events of post-translational modification. Protein Science, 23(8), 1077–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Romero, P. R., Zaidi, S., Fang, Y. Y., Uversky, V. N., Radivojac, P., Oldfield, C. J., Cortese, M. S., Sickmeier, M., LeGall, T., Obradovic, Z., & Dunker, A. K. (2006). Alternative splicing in concert with protein intrinsic disorder enables increased functional diversity in multicellular organisms. Proceedings of the National Academy of Sciences of the United States of America, 103(22), 8390–8395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Buljan, M., Chalancon, G., Dunker, A. K., Bateman, A., Balaji, S., Fuxreiter, M., & Babu, M. M. (2013). Alternative splicing of intrinsically disordered regions and rewiring of protein interactions. Current Opinion in Structural Biology, 23(3), 443–450.

    Article  CAS  PubMed  Google Scholar 

  48. Buljan, M., Chalancon, G., Eustermann, S., Wagner, G. P., Fuxreiter, M., Bateman, A., & Babu, M. M. (2012). Tissue-specific splicing of disordered segments that embed binding motifs rewires protein interaction networks. Molecular Cell, 46(6), 871–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2008). Intrinsically disordered proteins in human diseases: Introducing the D2 concept. Annual Review of Biophysics, 37, 215–246.

    Article  CAS  PubMed  Google Scholar 

  50. Uversky, V. N., Dave, V., Iakoucheva, L. M., Malaney, P., Metallo, S. J., Pathak, R. R., & Joerger, A. C. (2014). Pathological unfoldomics of uncontrolled chaos: Intrinsically disordered proteins and human diseases. Chemical Reviews, 114(13), 6844–6879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uversky, V. N. (2014). Wrecked regulation of intrinsically disordered proteins in diseases: Pathogenicity of deregulated regulators. Frontiers in Molecular Biosciences, 1, 6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Ho, J. X., Holowachuk, E. W., Norton, E. J., Twigg, P. D., & Carter, D. C. (1993). X-ray and primary structure of horse serum albumin (Equus caballus) at 0.27-nm resolution. European Journal of Biochemistry, 215(1), 205–212.

    Article  CAS  PubMed  Google Scholar 

  53. Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M., & Minor, W. (2012). Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology, 52(3-4), 174–182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bertucci, C., & Domenici, E. (2002). Reversible and covalent binding of drugs to human serum albumin: Methodological approaches and physiological relevance. Current Medicinal Chemistry, 9(15), 1463–1481.

    Article  CAS  PubMed  Google Scholar 

  55. Kratz, F., Abu Ajaj, K., & Warnecke, A. (2007). Anticancer carrier-linked prodrugs in clinical trials. Expert Opinion on Investigational Drugs, 16(7), 1037–1058.

    Article  CAS  PubMed  Google Scholar 

  56. Rothschild, M. A., Oratz, M., & Schreiber, S. S. (1988). Serum albumin. Hepatology, 8(2), 385–401.

    Article  CAS  PubMed  Google Scholar 

  57. Quinlan, G. J., Martin, G. S., & Evans, T. W. (2005). Albumin: Biochemical properties and therapeutic potential. Hepatology, 41(6), 1211–1219.

    Article  CAS  PubMed  Google Scholar 

  58. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 A resolution. Protein Engineering, 12(6), 439–446.

    Article  CAS  PubMed  Google Scholar 

  59. Yamasaki, K., Maruyama, T., Yoshimoto, K., Tsutsumi, Y., Narazaki, R., Fukuhara, A., Kragh-Hansen, U., & Otagiri, M. (1999). Interactive binding to the two principal ligand binding sites of human serum albumin: Effect of the neutral-to-base transition. Biochimica et biophysica acta, 1432(2), 313–323.

    Article  CAS  PubMed  Google Scholar 

  60. Baroni, S., Mattu, M., Vannini, A., Cipollone, R., Aime, S., Ascenzi, P., & Fasano, M. (2001). Effect of ibuprofen and warfarin on the allosteric properties of haem-human serum albumin. A spectroscopic study. European Journal of Biochemistry, 268(23), 6214–6220.

    Article  CAS  PubMed  Google Scholar 

  61. Wilting, J., van der Giesen, W. F., Janssen, L. H., Weideman, M. M., Otagiri, M., & Perrin, J. H. (1980). The effect of albumin conformation on the binding of warfarin to human serum albumin. The dependence of the binding of warfarin to human serum albumin on the hydrogen, calcium, and chloride ion concentrations as studied by circular dichroism, fluorescence, and equilibrium dialysis. The Journal of Biological Chemistry, 255(7), 3032–3037.

    CAS  PubMed  Google Scholar 

  62. Fasano, M., Baroni, S., Vannini, A., Ascenzi, P., & Aime, S. (2001). Relaxometric characterization of human hemalbumin. Journal of Biological Inorganic Chemistry, 6(5-6), 650–658.

    Article  CAS  PubMed  Google Scholar 

  63. Otagiri, M., & Chuang, V. T. (2009). Pharmaceutically important pre- and posttranslational modifications on human serum albumin. Biological & Pharmaceutical Bulletin, 32(4), 527–534.

    Article  CAS  Google Scholar 

  64. Minchiotti, L., Galliano, M., Kragh-Hansen, U., & Peters, Jr., T. (2008). Mutations and polymorphisms of the gene of the major human blood protein, serum albumin. Human Mutation, 29(8), 1007–1016.

    Article  CAS  PubMed  Google Scholar 

  65. Iwao, Y., Hiraike, M., Kragh-Hansen, U., Kawai, K., Suenaga, A., Maruyama, T., & Otagiri, M. (2009). Altered chain-length and glycosylation modify the pharmacokinetics of human serum albumin. Biochimica et biophysica acta, 1794(4), 634–641.

    Article  CAS  PubMed  Google Scholar 

  66. Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K., & Uversky, V. N. (2010). PONDR-FIT: A meta-predictor of intrinsically disordered amino acids. Biochimica et biophysica acta, 1804(4), 996–1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Romero, P., Obradovic, Z., Li, X., Garner, E. C., Brown, C. J., & Dunker, A. K. (2001). Sequence complexity of disordered protein. Proteins, 42(1), 38–48.

    Article  CAS  PubMed  Google Scholar 

  68. Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P., & Dunker, A. K. (2005). Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins, 61(Suppl 7), 176–182.

    Article  CAS  PubMed  Google Scholar 

  69. Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). IUPred: Web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics, 21(16), 3433–3434.

    Article  CAS  PubMed  Google Scholar 

  70. Peng, K., Vucetic, S., Radivojac, P., Brown, C. J., Dunker, A. K., & Obradovic, Z. (2005). Optimizing long intrinsic disorder predictors with protein evolutionary information. Journal of Bioinformatics and Computational Biology, 3(1), 35–60.

    Article  CAS  PubMed  Google Scholar 

  71. Peng, Z. L., & Kurgan, L. (2012). Comprehensive comparative assessment of in-silico predictors of disordered regions. Current Protein & Peptide Science, 13(1), 6–18.

    Article  CAS  Google Scholar 

  72. Fan, X., & Kurgan, L. (2014). Accurate prediction of disorder in protein chains with a comprehensive and empirically designed consensus. Journal of Biomolecular Structure & Dynamics, 32(3), 448–464.

    Article  CAS  Google Scholar 

  73. Peng, K., Radivojac, P., Vucetic, S., Dunker, A. K., & Obradovic, Z. (2006). Length-dependent prediction of protein intrinsic disorder. BMC Bioinformatics, 7, 208.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Prilusky, J., Felder, C. E., Zeev-Ben-Mordehai, T., Rydberg, E. H., Man, O., Beckmann, J. S., Silman, I., & Sussman, J. L. (2005). FoldIndex: A simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics, 21(16), 3435–3438.

    Article  CAS  PubMed  Google Scholar 

  75. Campen, A., Williams, R. M., Brown, C. J., Meng, J., Uversky, V. N., & Dunker, A. K. (2008). TOP-IDP-scale: A new amino acid scale measuring propensity for intrinsic disorder. Protein and Peptide Letters, 15(9), 956–963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Dosztanyi, Z., Csizmok, V., Tompa, P., & Simon, I. (2005). The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins. Journal of Molecular Biology, 347(4), 827–839.

    Article  CAS  PubMed  Google Scholar 

  77. Walsh, I., Giollo, M., Di Domenico, T., Ferrari, C., Zimmermann, O., & Tosatto, S. C. (2015). Comprehensive large-scale assessment of intrinsic protein disorder. Bioinformatics, 31(2), 201–208.

    Article  CAS  PubMed  Google Scholar 

  78. Peng, Z., Kurgan, L. (2012). On the complementarity of the consensus-based disorder prediction. Pacific Symposium on Biocomputing, 176–187.

  79. Oates, M. E., Romero, P., Ishida, T., Ghalwash, M., Mizianty, M. J., Xue, B., Dosztanyi, Z., Uversky, V. N., Obradovic, Z., Kurgan, L., Dunker, A. K., & Gough, J. (2013). D(2)P(2): Database of disordered protein predictions. Nucleic Acids Research, 41, D508–D516. (Database issue).

    Article  CAS  PubMed  Google Scholar 

  80. Ishida, T., & Kinoshita, K. (2007). PrDOS: Prediction of disordered protein regions from amino acid sequence. Nucleic Acids Research, 35, W460–W464. (Web Server issue).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Walsh, I., Martin, A. J., Di Domenico, T., & Tosatto, S. C. (2012). ESpritz: Accurate and fast prediction of protein disorder. Bioinformatics, 28(4), 503–509.

    Article  CAS  PubMed  Google Scholar 

  82. Hrabe, T., Li, Z., Sedova, M., Rotkiewicz, P., Jaroszewski, L., & Godzik, A. (2016). PDBFlex: Exploring flexibility in protein structures. Nucleic Acids Research, 44(D1), D423–D428.

    Article  CAS  PubMed  Google Scholar 

  83. Zirafi, O., Kim, K. A., Standker, L., Mohr, K. B., Sauter, D., Heigele, A., Kluge, S. F., Wiercinska, E., Chudziak, D., Richter, R., Moepps, B., Gierschik, P., Vas, V., Geiger, H., Lamla, M., Weil, T., Burster, T., Zgraja, A., Daubeuf, F., Frossard, N., Hachet-Haas, M., Heunisch, F., Reichetzeder, C., Galzi, J. L., Perez-Castells, J., Canales-Mayordomo, A., Jimenez-Barbero, J., Gimenez-Gallego, G., Schneider, M., Shorter, J., Telenti, A., Hocher, B., Forssmann, W. G., Bonig, H., Kirchhoff, F., & Munch, J. (2015). Discovery and characterization of an endogenous CXCR4 antagonist. Cell Reports, 11(5), 737–747.

    Article  CAS  PubMed  Google Scholar 

  84. Lee, P., & Wu, X. (2015). Review: Modifications of human serum albumin and their binding effect. Current Pharmaceutical Design, 21(14), 1862–1865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rabbani, N., & Thornalley, P. J. (2012). Glycation research in amino acids: A place to call home. Amino Acids, 42(4), 1087–1096.

    Article  CAS  PubMed  Google Scholar 

  86. Halliwell, B., & Gutteridge, J. M. C. (1999). Free radicals in biology and medicine. New York: Oxford University Press.

    Google Scholar 

  87. Pinkas, A., & Aschner, M. (2016). Advanced glycation end-products and their receptors: Related pathologies, recent therapeutic strategies, and a potential model for future neurodegeneration studies. Chemical Research in Toxicology, 29(5), 707–714.

    Article  CAS  PubMed  Google Scholar 

  88. Wu, W. C., Ma, W. Y., Wei, J. N., Yu, T. Y., Lin, M. S., Shih, S. R., Hua, C. H., Liao, Y. J., Chuang, L. M., & Li, H. Y. (2016). Serum glycated albumin to guide the diagnosis of diabetes mellitus. PLoS ONE, 11(1), e0146780.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Vetter, S. W. (2015). Glycated serum albumin and AGE receptors. Advances in Clinical Chemistry, 72, 205–275.

    Article  PubMed  Google Scholar 

  90. Ahmed, N., Dobler, D., Dean, M., & Thornalley, P. J. (2005). Peptide mapping identifies hotspot site of modification in human serum albumin by methylglyoxal involved in ligand binding and esterase activity. The Journal of Biological Chemistry, 280(7), 5724–5732.

    Article  CAS  PubMed  Google Scholar 

  91. Ueda, Y., & Matsumoto, H. (2015). Recent topics in chemical and clinical research on glycated albumin. Journal of Diabetes Science and Technology (Online), 9(2), 177–182.

    Article  CAS  Google Scholar 

  92. Coussons, P. J., Jacoby, J., McKay, A., Kelly, S. M., Price, N. C., & Hunt, J. V. (1997). Glucose modification of human serum albumin: A structural study. Free Radical Biology & Medicine, 22(7), 1217–1227.

    Article  CAS  Google Scholar 

  93. Anguizola, J., Matsuda, R., Barnaby, O. S., Hoy, K. S., Wa, C., DeBolt, E., Koke, M., & Hage, D. S. (2013). Review: Glycation of human serum albumin. Clinica Chimica Acta, 425, 64–76.

    Article  CAS  Google Scholar 

  94. Iberg, N., & Fluckiger, R. (1986). Nonenzymatic glycosylation of albumin in vivo. Identification of multiple glycosylated sites. The Journal of Biological Chemistry, 261(29), 13542–13545.

    CAS  PubMed  Google Scholar 

  95. Marashi, S. A., Safarian, S., & Moosavi-Movahedi, A. A. (2005). Why major nonenzymatic glycation sites of human serum albumin are preferred to other residues? Medical Hypotheses, 64(4), 881.

    Article  CAS  PubMed  Google Scholar 

  96. Barnaby, O. S., Cerny, R. L., Clarke, W., & Hage, D. S. (2011). Quantitative analysis of glycation patterns in human serum albumin using 16O/18O-labeling and MALDI-TOF MS. Clinica Chimica Acta, 412(17-18), 1606–1615.

    Article  CAS  Google Scholar 

  97. Wang, Y., Yu, H., Shi, X., Luo, Z., Lin, D., & Huang, M. (2013). Structural mechanism of ring-opening reaction of glucose by human serum albumin. The Journal of Biological Chemistry, 288(22), 15980–15987.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Bar-Or, R., Rael, L. T., & Bar-Or, D. (2008). Dehydroalanine derived from cysteine is a common post-translational modification in human serum albumin. Rapid Communications in Mass Spectrometry, 22(5), 711–716.

    Article  CAS  PubMed  Google Scholar 

  99. Gaston, B. M., Carver, J., Doctor, A., & Palmer, L. A. (2003). S-nitrosylation signaling in cell biology. Molecular Interventions, 3(5), 253–263.

    Article  CAS  PubMed  Google Scholar 

  100. Ishima, Y., Sawa, T., Kragh-Hansen, U., Miyamoto, Y., Matsushita, S., Akaike, T., & Otagiri, M. (2007). S-nitrosylation of human variant albumin Liprizzi (R410C) confers potent antibacterial and cytoprotective properties. The Journal of Pharmacology and Experimental Therapeutics, 320(3), 969–977.

    Article  CAS  PubMed  Google Scholar 

  101. Park, J. (1993). S-nitrosylation of sulfhydryl groups in albumin by nitrosating agents. Journal of Archives of Pharmacal Research, 16, 1–5.

    Article  CAS  Google Scholar 

  102. Ishima, Y., Akaike, T., Kragh-Hansen, U., Hiroyama, S., Sawa, T., Maruyama, T., Kai, T., & Otagiri, M. (2007). Effects of endogenous ligands on the biological role of human serum albumin in S-nitrosylation. Biochemical and Biophysical Research Communications, 364(4), 790–795.

    Article  CAS  PubMed  Google Scholar 

  103. Roche, M., Rondeau, P., Singh, N. R., Tarnus, E., & Bourdon, E. (2008). The antioxidant properties of serum albumin. FEBS Letters, 582(13), 1783–1787.

    Article  CAS  PubMed  Google Scholar 

  104. Gutteridge, J. M. (1986). Antioxidant properties of the proteins caeruloplasmin, albumin and transferrin. A study of their activity in serum and synovial fluid from patients with rheumatoid arthritis. Biochimica et biophysica acta, 869(2), 119–127.

    Article  CAS  PubMed  Google Scholar 

  105. Turell, L., Botti, H., Carballal, S., Ferrer-Sueta, G., Souza, J. M., Duran, R., Freeman, B. A., Radi, R., & Alvarez, B. (2008). Reactivity of sulfenic acid in human serum albumin. Biochemistry, 47(1), 358–367.

    Article  CAS  PubMed  Google Scholar 

  106. Carballal, S., Radi, R., Kirk, M. C., Barnes, S., Freeman, B. A., & Alvarez, B. (2003). Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite. Biochemistry, 42(33), 9906–9914.

    Article  CAS  PubMed  Google Scholar 

  107. Anraku, M., Yamasaki, K., Maruyama, T., Kragh-Hansen, U., & Otagiri, M. (2001). Effect of oxidative stress on the structure and function of human serum albumin. Pharmaceutical Research, 18(5), 632–639.

    Article  CAS  PubMed  Google Scholar 

  108. Bourdon, E., Loreau, N., Lagrost, L., & Blache, D. (2005). Differential effects of cysteine and methionine residues in the antioxidant activity of human serum albumin. Free Radical Research, 39(1), 15–20.

    Article  CAS  PubMed  Google Scholar 

  109. Kawakami, A., Kubota, K., Yamada, N., Tagami, U., Takehana, K., Sonaka, I., Suzuki, E., & Hirayama, K. (2006). Identification and characterization of oxidized human serum albumin. A slight structural change impairs its ligand-binding and antioxidant functions. The FEBS Journal, 273(14), 3346–3357.

    Article  CAS  PubMed  Google Scholar 

  110. Narazaki, R., & Otagiri, M. (1997). Covalent binding of a bucillamine derivative with albumin in sera from healthy subjects and patients with various diseases. Pharmaceutical Research, 14(3), 351–353.

    Article  CAS  PubMed  Google Scholar 

  111. Himmelfarb, J., & McMonagle, E. (2001). Albumin is the major plasma protein target of oxidant stress in uremia. Kidney International, 60(1), 358–363.

    Article  CAS  PubMed  Google Scholar 

  112. Kawai, K., Hayashi, T., Matsuyama, Y., Minami, T., & Era, S. (2010). Difference in redox status of serum and aqueous humor in senile cataract patients as monitored via the albumin thiol-redox state. Japanese Journal of Ophthalmology, 54(6), 584–588.

    Article  CAS  PubMed  Google Scholar 

  113. Kawai, K., Yoh, M., Hayashi, T., Imai, H., Negawa, T., Tomida, M., Sogami, M., & Era, S. (2001). Effect of diabetic retinopathy on redox state of aqueous humor and serum albumin in patients with senile cataract. The Tokai Journal of Experimental and Clinical Medicine, 26(3), 93–99.

    CAS  PubMed  Google Scholar 

  114. Jones, D. P., Mody, Jr, V. C., Carlson, J. L., Lynn, M. J., & Sternberg, Jr., P. (2002). Redox analysis of human plasma allows separation of pro-oxidant events of aging from decline in antioxidant defenses. Free Radical Biology & Medicine, 33(9), 1290–1300.

    Article  CAS  Google Scholar 

  115. Moriarty-Craige, S. E., & Jones, D. P. (2004). Extracellular thiols and thiol/disulfide redox in metabolism. Annual Review of Nutrition, 24, 481–509.

    Article  CAS  PubMed  Google Scholar 

  116. Cistola, D. P., & Small, D. M. (1991). Fatty acid distribution in systems modeling the normal and diabetic human circulation. A 13C nuclear magnetic resonance study. The Journal of Clinical Investigation, 87(4), 1431–1441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology, 5(9), 827–835.

    Article  CAS  PubMed  Google Scholar 

  118. Curry, S., Brick, P., & Franks, N. P. (1999). Fatty acid binding to human serum albumin: New insights from crystallographic studies. Biochimica et biophysica acta, 1441(2-3), 131–140.

    Article  CAS  PubMed  Google Scholar 

  119. Curry, S. (2009). Lessons from the crystallographic analysis of small molecule binding to human serum albumin. Drug Metabolism and Pharmacokinetics, 24(4), 342–357.

    Article  CAS  PubMed  Google Scholar 

  120. Spector, A. A. (1975). Fatty acid binding to plasma albumin. Journal of Lipid Research, 16(3), 165–179.

    CAS  PubMed  Google Scholar 

  121. Ashbrook, J. D., Spector, A. A., Santos, E. C., & Fletcher, J. E. (1975). Long chain fatty acid binding to human plasma albumin. The Journal of Biological Chemistry, 250(6), 2333–2338.

    CAS  PubMed  Google Scholar 

  122. Spector, A. A., Santos, E. C., Ashbrook, J. D., & Fletcher, J. E. (1973). Influence of free fatty acid concentration on drug binding to plasma albumin. Annals of the New York Academy of Sciences, 226, 247–258.

    Article  CAS  PubMed  Google Scholar 

  123. Sudlow, G., Birkett, D. J., & Wade, D. N. (1975). The characterization of two specific drug binding sites on human serum albumin. Molecular Pharmacology, 11(6), 824–832.

    CAS  PubMed  Google Scholar 

  124. Bhattacharya, A. A., Grune, T., & Curry, S. (2000). Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Journal of Molecular Biology, 303(5), 721–732.

    Article  CAS  PubMed  Google Scholar 

  125. Petitpas, I., Grune, T., Bhattacharya, A. A., & Curry, S. (2001). Crystal structures of human serum albumin complexed with monounsaturated and polyunsaturated fatty acids. Journal of Molecular Biology, 314(5), 955–960.

    Article  CAS  PubMed  Google Scholar 

  126. Hamilton, J. A., Cistola, D. P., Morrisett, J. D., Sparrow, J. T., & Small, D. M. (1984). Interactions of myristic acid with bovine serum albumin: A 13C NMR study. Proceedings of the National Academy of Sciences of the United States of America, 81(12), 3718–3722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Hamilton, J. A. (2004). Fatty acid interactions with proteins: What X-ray crystal and NMR solution structures tell us. Progress in Lipid Research, 43(3), 177–199.

    Article  CAS  PubMed  Google Scholar 

  128. Chuang, V. T., & Otagiri, M. (2002). How do fatty acids cause allosteric binding of drugs to human serum albumin? Pharmaceutical Research, 19(10), 1458–1464.

    Article  CAS  PubMed  Google Scholar 

  129. Simard, J. R., Zunszain, P. A., Ha, C. E., Yang, J. S., Bhagavan, N. V., Petitpas, I., Curry, S., & Hamilton, J. A. (2005). Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 17958–17963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Minchiotti, L., Kragh-Hansen, U., Nielsen, H., Hardy, E., Mercier, A. Y., & Galliano, M. (1999). Structural characterization, stability and fatty acid-binding properties of two French genetic variants of human serum albumin. Biochimica et biophysica acta, 1431(1), 223–231.

    Article  CAS  PubMed  Google Scholar 

  131. Kragh-Hansen, U., Campagnoli, M., Dodig, S., Nielsen, H., Benko, B., Raos, M., Cesati, R., Sala, A., Galliano, M., & Minchiotti, L. (2004). Structural analysis and fatty acid-binding properties of two Croatian variants of human serum albumin. Clinica Chimica Acta, 349(1-2), 105–112.

    Article  CAS  Google Scholar 

  132. Kragh-Hansen, U., Watanabe, H., Nakajou, K., Iwao, Y., & Otagiri, M. (2006). Chain length-dependent binding of fatty acid anions to human serum albumin studied by site-directed mutagenesis. Journal of Molecular Biology, 363(3), 702–712.

    Article  CAS  PubMed  Google Scholar 

  133. Michnik, A., Michalik, K., Kluczewska, A., Drzazga, Z. (2006). Comparative DSC study of human and bovine serum albumin. Journal of Thermal Analysis Calorimetry, 84(1), 113–117.

  134. Yang, F., Zhang, Y., & Liang, H. (2014). Interactive association of drugs binding to human serum albumin. International Journal of Molecular Sciences, 15(3), 3580–3595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Petitpas, I., Bhattacharya, A. A., Twine, S., East, M., & Curry, S. (2001). Crystal structure analysis of warfarin binding to human serum albumin: Anatomy of drug site I. The Journal of Biological Chemistry, 276(25), 22804–22809.

    Article  CAS  PubMed  Google Scholar 

  136. Kragh-Hansen, U., Chuang, V. T., & Otagiri, M. (2002). Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biological & Pharmaceutical Bulletin, 25(6), 695–704.

    Article  CAS  Google Scholar 

  137. Bhattacharya, A. A., Curry, S., & Franks, N. P. (2000). Binding of the general anesthetics propofol and halothane to human serum albumin. High resolution crystal structures. The Journal of Biological Chemistry, 275(49), 38731–38738.

    Article  CAS  PubMed  Google Scholar 

  138. Sjoholm, I., Ekman, B., Kober, A., Ljungstedt-Pahlman, I., Seiving, B., & Sjodin, T. (1979). Binding of drugs to human serum albumin:XI. The specificity of three binding sites as studied with albumin immobilized in microparticles. Molecular Pharmacology, 16(3), 767–777.

    CAS  PubMed  Google Scholar 

  139. Bos, O. J., Remijn, J. P., Fischer, M. J., Wilting, J., & Janssen, L. H. (1988). Location and characterization of the warfarin binding site of human serum albumin. A comparative study of two large fragments. Biochemical Pharmacology, 37(20), 3905–3909.

    Article  CAS  PubMed  Google Scholar 

  140. Ghuman, J., Zunszain, P. A., Petitpas, I., Bhattacharya, A. A., Otagiri, M., & Curry, S. (2005). Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology, 353(1), 38–52.

    Article  CAS  PubMed  Google Scholar 

  141. Yang, F., Yue, J., Ma, L., Ma, Z., Li, M., Wu, X., & Liang, H. (2012). Interactive associations of drug-drug and drug-drug-drug with IIA subdomain of human serum albumin. Molecular Pharmaceutics, 9(11), 3259–3265.

    Article  CAS  PubMed  Google Scholar 

  142. Simard, J. R., Zunszain, P. A., Hamilton, J. A., & Curry, S. (2006). Location of high and low affinity fatty acid binding sites on human serum albumin revealed by NMR drug-competition analysis. Journal of Molecular Biology, 361(2), 336–351.

    Article  CAS  PubMed  Google Scholar 

  143. Buttar, D., Colclough, N., Gerhardt, S., MacFaul, P. A., Phillips, S. D., Plowright, A., Whittamore, P., Tam, K., Maskos, K., Steinbacher, S., & Steuber, H. (2010). A combined spectroscopic and crystallographic approach to probing drug-human serum albumin interactions. Bioorganic & Medicinal Chemistry, 18(21), 7486–7496.

    Article  CAS  Google Scholar 

  144. Zsila, F., Bikadi, Z., Malik, D., Hari, P., Pechan, I., Berces, A., & Hzai, E. (2011). Evaluation of drug-human serum albumin binding interactions with support vector machine aided on line automated docking. Bioinformatics, 27(13), 1806–1813.

    Article  CAS  PubMed  Google Scholar 

  145. Artali, R., Bombieri, G., Calabi, L., & Del Pra, A. (2005). A molecular dynamics study of human serum albumin binding sites. Farmaco, 60(6-7), 485–495.

    Article  CAS  PubMed  Google Scholar 

  146. Beaven, G. H., Chen, S. H., d’ Albis, A., & Gratzer, W. B. (1974). A spectroscopic study of the haemin—Human-serum-albumin system. European Journal of Biochemistry, 41(3), 539–546.

    Article  CAS  PubMed  Google Scholar 

  147. Wardell, M., Wang, Z., Ho, J. X., Robert, J., Ruker, F., Ruble, J., & Carter, D. C. (2002). The atomic structure of human methemalbumin at 1.9 A. Biochemical and Biophysical Research Communications, 291(4), 813–819.

    Article  CAS  PubMed  Google Scholar 

  148. Zunszain, P. A., Ghuman, J., Komatsu, T., Tsuchida, E., & Curry, S. (2003). Crystal structural analysis of human serum albumin complexed with hemin and fatty acid. BMC Structural Biology, 3, 6.

    Article  PubMed  PubMed Central  Google Scholar 

  149. Fanali, G., Fesce, R., Agrati, C., Ascenzi, P., & Fasano, M. (2005). Allosteric modulation of myristate and Mn(III)heme binding to human serum albumin. Optical and NMR spectroscopy characterization. The FEBS Journal, 272(18), 4672–4683.

    Article  CAS  PubMed  Google Scholar 

  150. Fasano, M., Curry, S., Terreno, E., Galliano, M., Fanali, G., Narciso, P., Notari, S., & Ascenzi, P. (2005). The extraordinary ligand binding properties of human serum albumin. IUBMB Life, 57(12), 787–796.

    Article  CAS  PubMed  Google Scholar 

  151. Harford, C., & Sarkar, B. (1997). Amino terminal Cu(II)- and Ni(II)-binding (ATCUN) motif of proteins and peptides: Metal binding, DNA cleavage, and other properties. Accounts of Chemical Research, 30, 123–130.

    Article  CAS  Google Scholar 

  152. Blindauer, C.A., Khazaipoul, S., Yu, R., Stewart, A.J. (2016). Fatty acid-mediated inhibition of metal binding to the multi-metal site on serum albumin: Implications for cardiovascular disease. Current Topics in Medicinal Chemistry 16(27), 3021–3032.

  153. Bal, W., Christodoulou, J., Sadler, P. J., & Tucker, A. (1998). Multi-metal binding site of serum albumin. Journal of Inorganic Biochemistry, 70(1), 33–39.

    Article  CAS  PubMed  Google Scholar 

  154. Giroux, E., & Schoun, J. (1981). Copper and zinc ion binding by bovine, dog, and rat serum albumins. Journal of Inorganic Biochemistry, 14(4), 359–362.

    Article  CAS  PubMed  Google Scholar 

  155. Goumakos, W., Laussac, J. P., & Sarkar, B. (1991). Binding of cadmium(II) and zinc(II) to human and dog serum albumins. An equilibrium dialysis and 113Cd-NMR study. Biochemistry and Cell Biology, 69(12), 809–820.

    Article  CAS  PubMed  Google Scholar 

  156. Sadler, P. J., & Viles, J. H. (1996). 1H and (113)Cd NMR investigations of Cd(2+) and Zn(2+) binding sites on serum albumin: Competition with Ca(2+), Ni(2+), Cu(2+), and Zn(2+). Inorganic Chemistry, 35(15), 4490–4496.

    Article  CAS  PubMed  Google Scholar 

  157. Christodoulou, J., Sadler, P. J., & Tucker, A. (1994). A new structural transition of serum albumin dependent on the state of Cys34. Detection by 1H-NMR spectroscopy. European Journal of Biochemistry, 225(1), 363–368.

    Article  CAS  PubMed  Google Scholar 

  158. Esposito, B. P., & Najjar, R. (2002). Interactions of antitumoral platinum-group metallodrugs with albumin. Coordination Chemistry Reviews, 232, 137–149.

    Article  CAS  Google Scholar 

  159. Bar-Or, D., Curtis, G., Rao, N., Bampos, N., & Lau, E. (2001). Characterization of the Co(2+) and Ni(2+) binding amino-acid residues of the N-terminus of human albumin. An insight into the mechanism of a new assay for myocardial ischemia. European Journal of Biochemistry, 268(1), 42–47.

    Article  CAS  PubMed  Google Scholar 

  160. Stohs, S. J., & Bagchi, D. (1995). Oxidative mechanisms in the toxicity of metal ions. Free Radical Biology & Medicine, 18(2), 321–336.

    Article  CAS  Google Scholar 

  161. Halliwell, B. (1988). Albumin—An important extracellular antioxidant? Biochemical Pharmacology, 37(4), 569–571.

    Article  CAS  PubMed  Google Scholar 

  162. Masuoka, J., Hegenauer, J., Van Dyke, B. R., & Saltman, P. (1993). Intrinsic stoichiometric equilibrium constants for the binding of zinc(II) and copper(II) to the high affinity site of serum albumin. The Journal of Biological Chemistry, 268(29), 21533–21537.

    CAS  PubMed  Google Scholar 

  163. Bar-Or, D., Winkler, J. V., Vanbenthuysen, K., Harris, L., Lau, E., & Hetzel, F. W. (2001). Reduced albumin-cobalt binding with transient myocardial ischemia after elective percutaneous transluminal coronary angioplasty: A preliminary comparison to creatine kinase-MB, myoglobin, and troponin I. American Heart Journal, 141(6), 985–991.

    Article  CAS  PubMed  Google Scholar 

  164. Stewart, A. J., Blindauer, C. A., Berezenko, S., Sleep, D., & Sadler, P. J. (2003). Interdomain zinc site on human albumin. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3701–3706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Kragh-Hansen, U., & Vorum, H. (1993). Quantitative analyses of the interaction between calcium ions and human serum albumin. Clinical Chemistry, 39(2), 202–208.

    CAS  PubMed  Google Scholar 

  166. Pedersen, K. O. (1972). Binding of calcium to serum albumin. III. Influence of ionic strength and ionic medium. Scandinavian Journal of Clinical and Laboratory Investigation, 29(4), 427–432.

    Article  CAS  PubMed  Google Scholar 

  167. Topala, T., Bodoki, A., Oprean, L., & Oprean, R. (2014). Bovine serum albumin interactions with metal complexes. Clujul Medical, 87(4), 215–219.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Liu, H., Shi, X., Xu, M., Li, Z., Huang, L., Bai, D., & Zeng, Z. (2011). Transition metal complexes of 2, 6-di ((phenazonyl-4-imino) methyl)-4-methylphenol: Structure and biological evaluation. European Journal of Medicinal Chemistry, 46(5), 1638–1647.

    Article  CAS  PubMed  Google Scholar 

  169. Sathyadevi, P., Krishnamoorthy, P., Jayanthi, E., Butorac, R. R., Cowley, A. H., & Dharmaraj, N. (2012). Studies on the effect of metal ions of hydrazone complexes on interaction with nucleic acids, bovine serum albumin and antioxidant properties. Inorganica Chimica Acta, 384, 83–96.

    Article  CAS  Google Scholar 

  170. Samari, F., Hemmateenejad, B., Shamsipur, M., Rashidi, M., & Samouei, H. (2012). Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: A spectroscopic approach. Inorganic Chemistry, 51(6), 3454–3464.

    Article  CAS  PubMed  Google Scholar 

  171. Gonias, S. L., & Pizzo, S. V. (1983). Complex of serum albumin and cis dichlorodiammineplatinum(II). The Journal of Biological Chemistry, 258, 5764–5769.

    CAS  PubMed  Google Scholar 

  172. Pizzo, S. V., Swaim, M. W., Roche, P. A., & Gonias, S. L. (1988). Selectivity and stereospecificity of the reactions of dichlorodiammineplatinum(II) with three purified plasma proteins. Journal of Inorganic Biochemistry, 33(1), 67–76.

    Article  CAS  PubMed  Google Scholar 

  173. Timerbaev, A. R., Aleksenko, S. S., Polec-Pawlak, K., Ruzik, R., Semenova, O., Hartinger, C. G., Oszwaldowski, S., Galanski, M., Jarosz, M., & Keppler, B. K. (2004). Platinum metallodrug-protein binding studies by capillary electrophoresis-inductively coupled plasma-mass spectrometry: Characterization of interactions between Pt(II) complexes and human serum albumin. Electrophoresis, 25(13), 1988–1995.

    Article  CAS  PubMed  Google Scholar 

  174. Spitzauer, S. (1999). Allergy to mammalian proteins: At the borderline between foreign and self? International Archives of Allergy and Immunology, 120(4), 259–269.

    Article  CAS  PubMed  Google Scholar 

  175. Alting, A. C., Meijer, R. J., & van Beresteijn, E. C. (1997). Incomplete elimination of the ABBOS epitope of bovine serum albumin under simulated gastrointestinal conditions of infants. Diabetes Care, 20(5), 875–880.

    Article  CAS  PubMed  Google Scholar 

  176. Karjalainen, J., Martin, J. M., Knip, M., Ilonen, J., Robinson, B. H., Savilahti, E., Akerblom, H. K., & Dosch, H. M. (1992). A bovine albumin peptide as a possible trigger of insulin-dependent diabetes mellitus. The New England Journal of Medicine, 327(5), 302–307.

    Article  CAS  PubMed  Google Scholar 

  177. Beretta, B., Conti, A., Fiocchi, A., Gaiaschi, A., Galli, C. L., Giuffrida, M. G., Ballabio, C., & Restani, P. (2001). Antigenic determinants of bovine serum albumin. International Archives of Allergy and Immunology, 126(3), 188–195.

    Article  CAS  PubMed  Google Scholar 

  178. Restani, P., Fiocchi, A., Beretta, B., Velona, T., Giovannini, M., & Galli, C. L. (1998). Effects of structure modifications on IgE binding properties of serum albumins. International Archives of Allergy and Immunology, 117(2), 113–119.

    Article  CAS  PubMed  Google Scholar 

  179. Tanabe, S., Kobayashi, Y., Takahata, Y., Morimatsu, F., Shibata, R., & Nishimura, T. (2002). Some human B and T cell epitopes of bovine serum albumin, the major beef allergen. Biochemical and Biophysical Research Communications, 293(5), 1348–1353.

    Article  CAS  PubMed  Google Scholar 

  180. Ueno, H., Masuko, T., Wang, J., & Hashimoto, Y. (1994). Epitope mapping of bovine serum albumin using monoclonal antibodies coupled with a photoreactive crosslinker. Journal of Biochemistry, 115(6), 1119–1127.

    Article  CAS  PubMed  Google Scholar 

  181. Schnitzer, J. E., & Oh, P. (1992). Antibodies to SPARC inhibit albumin binding to SPARC, gp60, and microvascular endothelium. The American Journal of Physiology, 263(6 Pt 2), H1872–H1879.

    CAS  PubMed  Google Scholar 

  182. Schnitzer, J. E., Sung, A., Horvat, R., & Bravo, J. (1992). Preferential interaction of albumin-binding proteins, gp30 and gp18, with conformationally modified albumins. Presence in many cells and tissues with a possible role in catabolism. The Journal of Biological Chemistry, 267(34), 24544–24553.

    CAS  PubMed  Google Scholar 

  183. Chaudhury, C., Mehnaz, S., Robinson, J. M., Hayton, W. L., Pearl, D. K., Roopenian, D. C., & Anderson, C. L. (2003). The major histocompatibility complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. The Journal of Experimental Medicine, 197(3), 315–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Birn, H., Fyfe, J. C., Jacobsen, C., Mounier, F., Verroust, P. J., Orskov, H., Willnow, T. E., Moestrup, S. K., & Christensen, E. I. (2000). Cubilin is an albumin binding protein important for renal tubular albumin reabsorption. The Journal of Clinical Investigation, 105(10), 1353–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cui, S., Verroust, P. J., Moestrup, S. K., & Christensen, E. I. (1996). Megalin/gp330 mediates uptake of albumin in renal proximal tubule. The American Journal of Physiology, 271(4 Pt 2), F900–F907.

    CAS  PubMed  Google Scholar 

  186. Ghinea, N., Fixman, A., Alexandru, D., Popov, D., Hasu, M., Ghitescu, L., Eskenasy, M., Simionescu, M., & Simionescu, N. (1988). Identification of albumin-binding proteins in capillary endothelial cells. The Journal of Cell Biology, 107(1), 231–239.

    Article  CAS  PubMed  Google Scholar 

  187. Sage, H., Johnson, C., & Bornstein, P. (1984). Characterization of a novel serum albumin-binding glycoprotein secreted by endothelial cells in culture. The Journal of Biological Chemistry, 259(6), 3993–4007.

    CAS  PubMed  Google Scholar 

  188. Schnitzer, J. E. (1992). gp60 is an albumin-binding glycoprotein expressed by continuous endothelium involved in albumin transcytosis. The American Journal of Physiology, 262(1 Pt 2), H246–H254.

    CAS  PubMed  Google Scholar 

  189. Schnitzer, J. E. (1993). Update on the cellular and molecular basis of capillary permeability. Trends in Cardiovascular Medicine, 3(4), 124–130.

    Article  CAS  PubMed  Google Scholar 

  190. Schnitzer, J. E., & Bravo, J. (1993). High affinity binding, endocytosis, and degradation of conformationally modified albumins. Potential role of gp30 and gp18 as novel scavenger receptors. The Journal of Biological Chemistry, 268(10), 7562–7570.

    CAS  PubMed  Google Scholar 

  191. Merlot, A. M., Kalinowski, D. S., & Richardson, D. R. (2014). Unraveling the mysteries of serum albumin-more than just a serum protein. Front in Physiology, 5, 299.

    Article  Google Scholar 

  192. Sage, H., Vernon, R. B., Funk, S. E., Everitt, E. A., & Angello, J. (1989). SPARC, a secreted protein associated with cellular proliferation, inhibits cell spreading in vitro and exhibits Ca+2-dependent binding to the extracellular matrix. The Journal of Cell Biology, 109(1), 341–356.

    Article  CAS  PubMed  Google Scholar 

  193. Lane, T. F., & Sage, E. H. (1994). The biology of SPARC, a protein that modulates cell-matrix interactions. The FASEB Journal, 8(2), 163–173.

    Article  CAS  PubMed  Google Scholar 

  194. Roopenian, D. C., & Akilesh, S. (2007). FcRn: The neonatal Fc receptor comes of age. Nature Reviews Immunology, 7(9), 715–725.

    Article  CAS  PubMed  Google Scholar 

  195. Schmidt, M. M., Townson, S. A., Andreucci, A. J., King, B. M., Schirmer, E. B., Murillo, A. J., Dombrowski, C., Tisdale, A. W., Lowden, P. A., Masci, A. L., Kovalchin, J. T., Erbe, D. V., Wittrup, K. D., Furfine, E. S., & Barnes, T. M. (2013). Crystal structure of an HSA/FcRn complex reveals recycling by competitive mimicry of HSA ligands at a pH-dependent hydrophobic interface. Structure, 21(11), 1966–1978.

    Article  CAS  PubMed  Google Scholar 

  196. Oganesyan, V., Damschroder, M. M., Cook, K. E., Li, Q., Gao, C., Wu, H., & Dall’Acqua, W. F. (2014). Structural insights into neonatal Fc receptor-based recycling mechanisms. The Journal of Biological Chemistry, 289(11), 7812–7824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Indurthi, V. S. K., Leclerc, E., & Vetter, S. W. (2012). Interaction between glycated serum albumin and AGE-receptors depends on structural changes and the glycation reagent. Archives of Biochemistry and Biophysics, 528(2), 185–196.

    Article  CAS  PubMed  Google Scholar 

  198. Shang, D., Peng, T., Gou, S., Li, Y., Wu, H., Wang, C., & Yang, Z. (2016). High mobility group box protein 1 boosts endothelial albumin transcytosis through the RAGE/Src/Caveolin-1 pathway. Scientific Reports, 6, 32180.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Arasteh, A., Farahi, S., Habibi-Rezaei, M., & Moosavi-Movahedi, A. A. (2014). Glycated albumin: An overview of the In Vitro models of an In Vivo potential disease marker. Journal of Diabetes & Metabolic Disorders, 13, 49.

    Article  CAS  Google Scholar 

  200. Larsen, M. T., Kuhlmann, M., Hvam, M. L., & Howard, K. A. (2016). Albumin-based drug delivery: Harnessing nature to cure disease. Molecular and Cellular Therapies, 4, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Szklarczyk, D., Franceschini, A., Kuhn, M., Simonovic, M., Roth, A., Minguez, P., Doerks, T., Stark, M., Muller, J., Bork, P., Jensen, L. J., & von Mering, C. (2011). The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research, 39, D561–D568. (Database issue).

    Article  CAS  PubMed  Google Scholar 

  202. Shatsky, M., Nussinov, R., & Wolfson, H. J. (2004). A method for simultaneous alignment of multiple protein structures. Proteins, 56(1), 143–156.

    Article  CAS  PubMed  Google Scholar 

  203. Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. 27-38.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a Grant No 16-34-60229 from the Russian Foundation for Basic Research (E.A.L.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugene A. Permyakov.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Litus, E.A., Permyakov, S.E., Uversky, V.N. et al. Intrinsically Disordered Regions in Serum Albumin: What Are They For?. Cell Biochem Biophys 76, 39–57 (2018). https://doi.org/10.1007/s12013-017-0785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-017-0785-6

Keywords

Navigation