Skip to main content
Log in

Cation Modulation of Hemoglobin Interaction with Sodium n-Dodecyl Sulfate (SDS). III: Calcium Interaction with R- and Mixed Spin States of Hemoglobin S at pH 5.0: The Musical Chair Paradox

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

We investigate the interaction of Ca2+ (0–500 µM) and a membrane mimic (0.60 mM SDS) with both the R- and mixed spin states hemoglobin S (HbS) as a function of time. These interactions were carried out at pH 5.0. We aim at ascertaining if there is or are differences in the UV–Visible spectra of such interactions to account for the dynamics of calcium ion concentrations [Ca2+] in initiating structures which may ultimately suggest HbS polymerization and or resistance to Plasmodium attack. From our results, we conclude that (a) simultaneous interaction of 40 µM Ca2+ and 0.60 mM SDS with the R state protein would promote structural formations that can “lock up” the protein for nucleation on the membranes and or become cytotoxic to the parasite; (b) simultaneous R state HbS-SDS or R state HbS-Ca2+ would lead to enhanced hemin formation and less deoxyHb species. This condition is unlikely to precipitate polymerization in the HbS but the resulting hemin would poison the parasite; (c) the mixed spin state HbS-SDS and 40 µM Ca2+ interaction yields more toxic products to that of the interaction of the mixed spin HbS-SDS with 500 µM Ca2+ thus suggesting why the 40 µM Ca2+ is important in parasite Hb proteolysis; and (d) pronounced structural changes on interaction with SDS and Ca2+ are more in the R state to the mixed spin state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chilaka, F. C., Nwamba, C. O., & Moosavi-Movahedi, A. A. (2011). Cation modulation of hemoglobin interaction with sodium n-dodecyl sulfate (SDS). I. Calcium modulation at pH 7.20. Cell Biochemistry and Biophysics, 60, 187–197.

    Article  PubMed  CAS  Google Scholar 

  2. Nwamba, C. O., Chilaka, F. C., & Moosavi-Movahedi, A. A. (2011). Cation modulation of hemoglobin interaction with sodium n-dodecyl sulfate (SDS). II. Calcium modulation at pH 5.0. Cell Biochemistry and Biophysics, 61, 573–584.

    Article  PubMed  CAS  Google Scholar 

  3. Marva, E., & Hebbel, R. P. (1994). Denaturing interaction between sickle hemoglobin and phosphatidylserine liposomes. Blood, 83, 242–249.

    PubMed  CAS  Google Scholar 

  4. Akompong, T., Ghori, N., & Haldar, K. (2000). In vitro activity of riboflavin against the human malaria parasite Plasmodium falciparum. Antimicrobial Agents and Chemotherapy, 44, 88–96.

    Article  PubMed  CAS  Google Scholar 

  5. Williams, T. N., Mwangi, T. W., Roberts, D. J., Alexander, N. D., Weatherall, D. J., Wambua, S., et al. (2005). An immune basis for malaria protection by the sickle cell trait. PloS Medicine, 2, 0441–0445.

    Google Scholar 

  6. Cholera, R., Brittain, N. J., Gillrie, M. R., Lopera-Mesa, T. M., Diakité, S. A. S., Arie, T., et al. (2008). Impaired cytoadherence of Plasmodium falciparum-infected erythrocytes containing sickle hemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 105, 991–996.

    Article  PubMed  CAS  Google Scholar 

  7. Ivanov, V. T., Karelin, A. A., Philippova, M. A., Nazimov, I. V., & Pletnev, V. Z. (1997). Hemoglobin as a source of endogenous bioactive peptides: The concept of tissue-specific peptide pool. Biopolymers, 43, 171–188.

    Article  PubMed  CAS  Google Scholar 

  8. Machado, A., Sforça, M. L., Miranda, A., Daffre, S., Pertinhez, T. A., Spisni, A., et al. (2007). Truncation of amidated fragment 33–61 of bovine α-hemoglobin: Effects on the structure and anticandidal activity. Biopolymers (Peptide Science), 88, 413–426.

    Article  CAS  Google Scholar 

  9. Hubber, S. M., Uhlemann, A.-C., Gamper, N. L., Duranton, C., Kremsner, P. G., & Lang, F. (2002). Plasmodium falciparum activates endogenous Cl channels of human erythrocytes by membrane oxidation. European Molecular Biology Organization Journal, 21, 22–30.

    Article  Google Scholar 

  10. Gazarini, M. L., Thomas, A. P., Pozzan, T., & Garcia, C. R. S. (2003). Calcium signalling in a low calcium environment: How the intracellular malaria parasite solves the problem. Journal of Cell Biology, 161, 103–110.

    Article  PubMed  CAS  Google Scholar 

  11. Kirk, K. (2001). Membrane transport in the malaria-infected erythrocyte. Physiological Review, 81, 495–537.

    CAS  Google Scholar 

  12. Eaton, J. W., Skelton, T. D., Swofford, H. S., Kolpin, C. E., & Jacob, H. S. (1973). Elevated erythrocyte calcium in sickle cell disease. Nature, 246, 105–106.

    Article  PubMed  CAS  Google Scholar 

  13. Kelemen, C., Chien, S., & Artmann, G. M. (2001). Temperature transition of human hemoglobin at body temperature: Effects of calcium. Biochemical Journal, 80, 2622–2630.

    CAS  Google Scholar 

  14. Orjih, A. U. (2001). On the mechanism of hemozoin production in malaria parasites: Activated erythrocyte membranes promote β-hematin synthesis. Experimental Biology and Medicine, 226, 746–752.

    PubMed  CAS  Google Scholar 

  15. Mooren, Ch. F., & Kinne, R. K. H. (1998). Cellular calcium in health and disease. Biochimica et Biophysica Acta, 1406, 127–151.

    Article  PubMed  CAS  Google Scholar 

  16. Shin, I., Kreimer, D., Silman, I., & Weiner, L. (1997). Membrane-promoted unfolding of acetylcholinesterase: A possible mechanism for insertion into the lipid bilayer. Proceedings of the National Academy of Sciences of the United States of America, 94, 2848–2852.

    Article  PubMed  CAS  Google Scholar 

  17. Tanaka, A., & Hoshino, E. (2003). Similarities between the thermal inactivation kinetics of Bacillus amyloliquefaciens α-amylase in an aqueous solution of sodium dodecyl sulphate and the kinetics in the solution of anionic phospholipid vesicles. Biotechnology and Applied Biochemistry, 38, 175–181.

    Article  PubMed  CAS  Google Scholar 

  18. Antonini, E., & Brunori, M. (1971). The derivatives of ferrous hemoglobin and myoglobin. In A. Neuberger & E. L. Tatum (Eds.), Hemoglobin and myoglobin in their reactions with ligands (Vol. 21, pp. 13–39). Amsterdam: North-Holland Publishing Co.

    Google Scholar 

  19. Goldstein, S., & Samuni, A. (2005). Intra- and intermolecular oxidation of oxymyoglobin and oxyhemoglobin induced by hydroxyl and carbonate radicals. Free Radical Biology & Medicine, 39, 511–519.

    Article  CAS  Google Scholar 

  20. Wetlaufer, D. B., Edsall, J. T., & Hollingworth, B. R. (1958). Ultraviolet difference spectra of tyrosine groups in proteins and amino acids. Journal of Biological Chemistry, 233, 1421–1428.

    PubMed  CAS  Google Scholar 

  21. Sinha, K. K., & Udgaonkar, J. B. (2007). Dissecting the non-specific and specific components of the initial folding reaction of barstar by multi-site FRET measurements. Journal of Molecular Biology, 370, 385–405.

    Article  PubMed  CAS  Google Scholar 

  22. Lorenz, T., & Reinstein, J. (2008). The influence of proline isomerization and offpathway intermediates on the folding mechanism of eukaryotic UMP/CMP kinase. Journal of Molecular Biology, 381, 443–455.

    Article  PubMed  CAS  Google Scholar 

  23. Aoki, K., & Foster, J. F. (1957). Electrophoretic behaviour of bovine plasma albumin at low pH. Journal of American Chemical Society, 79, 3385–3393.

    Article  CAS  Google Scholar 

  24. Otzen, D. E., & Oliveberg, M. (2002). Burst-phase expansion of native protein prior to global unfolding in SDS. Journal of Molecular Biology, 315, 1231–1240.

    Article  PubMed  CAS  Google Scholar 

  25. Aoki, K., & Foster, J. F. (1957). Electrophoretic and hydrogen ion binding behaviour of bovine plasma albumin in the presence of 0.02 M thiocyanate ion. Journal of American Chemical Society, 79, 3393–3396.

    Article  CAS  Google Scholar 

  26. Tanford, C. (1957). The acid denaturation of ferrihemoglobin (Communications to the editor). Journal of American Chemical Society, 79, 3931–3932.

    Article  CAS  Google Scholar 

  27. Dadlez, M. (1999). Folding initiation sites and protein folding. Acta Biochimica Polonica, 46, 487–508.

    PubMed  CAS  Google Scholar 

  28. Kirby, E. P., & Steiner, R. F. (1970). The tryptophan microenvironments in apomyoglobin. Journal of Biological Chemistry, 245, 6300–6306.

    PubMed  CAS  Google Scholar 

  29. Tanabe, K. (1990). Ion metabolism in malaria infected erythrocytes. Blood Cells, 16, 437–449.

    PubMed  CAS  Google Scholar 

  30. He, K., He, Y. A., Szklarz, G. D., Halpert, J. R., & Correia, M. A. (1996). Secobarbital-mediated inactivation of cytochrome P450 2B1 and its active site mutants: Partitioning between heme and protein alkylation and epoxidation. Journal of Biological Chemistry, 271, 25864–25872.

    Article  PubMed  CAS  Google Scholar 

  31. He, K., Woolf, T. F., & Hollenberg, P. F. (1999). Mechanism-based inactivation of cytochrome P-450-3A4 by Mifepristone (RU486). Journal of Pharmacological and Experimental Therapeutics, 288, 791–797.

    CAS  Google Scholar 

  32. Egawa, T., Hishiki, T., Ichikawa, Y., Kanamori, Y., Shimada, H., Takahashi, S., et al. (2004). Refolding processes of cytochrome P450cam from ferric and ferrous acid forms to the native conformation: Formations of folding intermediates with non-native heme coordination state. Journal of Biological Chemistry, 279, 32008–32017.

    Article  PubMed  CAS  Google Scholar 

  33. Kristinsson, H. G. (2002). Acid-induced unfolding of flounder haemoglobin: Evidence for a molten globular state with enhanced pro-oxidative activity. Journal of Agricultural and Food Chemistry, 50, 7669–7676.

    Article  PubMed  CAS  Google Scholar 

  34. Boffi, A., Das, T. K., della Longa, S., Spagnuolo, C., & Rousseau, D. L. (1999). Pentacoordinate hemin derivatives in sodium dodecyl sulfate micelles: Model systems for the assignment of the fifth ligand in ferric heme proteins. Biophysical Journal, 77, 1143–1149.

    Article  PubMed  CAS  Google Scholar 

  35. Asakura, T., Minakata, K., Adachi, K., Russell, M. O., & Schwartz, E. (1977). Denatured hemoglobin in sickle erythrocytes. Journal of Clinical Investigation, 59, 633–640.

    Article  PubMed  CAS  Google Scholar 

  36. Rifkind, J. M., Abugo, O., Levy, A., & Heim, J. (1994). Detection, formation, and relevance of hemichromes and hemochromes. Methods in Enzymology, 231, 449–480.

    Article  PubMed  CAS  Google Scholar 

  37. Pan, W., Uzunova, V. V., & Vekilov, P. G. (2009). Free heme in micromolar amounts enhances the attraction between sickle cell hemoglobin molecules. Biopolymers, 91, 1108–1116.

    Article  PubMed  CAS  Google Scholar 

  38. Lew, V. L., Hockaday, A., Sepulveda, M. I., Somlyo, A. P., Somlyo, A. V., Ortiz, O. E., et al. (1985). Compartmentalization of sickle cell calcium in endocytic inside-out vesicles. Nature (London), 315, 586–589.

    Article  CAS  Google Scholar 

  39. Murphy, E., Berkowitz, L. R., Orringer, E., Levy, L., Gabel, S. A., & London, R. E. (1987). Cytosolic free calcium levels in sickle red blood cells. Blood, 69, 1469–1474.

    PubMed  CAS  Google Scholar 

  40. Eisinger, J., Flores, J., & Salhany, J. M. (1982). Association of cytosol hemoglobin with the membrane in intact erythrocytes. Proceedings of the National Academy of Sciences of the United States of America, 79, 408–412.

    Article  PubMed  CAS  Google Scholar 

  41. Hebbel, R. P., Morgan, W. T., Eaton, J. W., & Hedlund, B. E. (1988). Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proceedings of the National Academy of Sciences of the United States of America, 85, 237–241.

    Article  PubMed  CAS  Google Scholar 

  42. Evans, E. A., & Mohandas, N. (1987). Membrane-associated sickle hemoglobin: A major determinant of sickle erythrocyte rigidity. Blood, 70, 1443–1449.

    PubMed  CAS  Google Scholar 

  43. Lew, V. L., & Bookchin, R. M. (2005). Ion transport pathology in the mechanism of sickle cell dehydration. Physiological Review, 85, 179–200.

    Article  CAS  Google Scholar 

  44. Briehl, R. W., & Herzfeld, J. (1979). Tactoidal state and phase transitions in systems of linear polymers of variable length. Proceedings of the National Academy of Sciences of the United States of America, 76, 2740–2744.

    Article  PubMed  CAS  Google Scholar 

  45. Dobson, C. M. (2005). Summary of the horizon symposium on “protein folding and disease”. Horizon symposium on protein folding and disease (pp. 1–7). Retrieved November 25, 2005 from http://www.nature.com/horizon/proteinfolding/pdf/summary.pdf.

  46. Slemmon, J. R., Hughes, C. M., Campbell, G. A., & Flood, D. G. (1994). Increased levels of hemoglobin-derived and other peptides in Alzheimer’s disease cerebellum. Journal of Neurosciences, 14, 2225–2235.

    CAS  Google Scholar 

  47. Fogaça, A. C., da Silva (Jr), P. I., Miranda, M. T. M., Bianchi, A. G., Miranda, A., Ribolla, P. E. M., et al. (1999). Antimicrobial activity of a bovine hemoglobin fragment in the tick Boophilus microplus. Journal of Biological Chemistry, 274, 25330–25334.

    Article  PubMed  Google Scholar 

  48. Lombardo, M. E., Araujo, L. S., Ciccarelli, A. B., & Batlle, A. (2005). A spectrophotometric method for estimating hemin in biological systems. Analytical Biochemistry, 341, 199–203.

    Article  PubMed  CAS  Google Scholar 

  49. Giulivi, C., & Davies, K. J. A. (1994). Hydrogen-peroxide mediated ferrylhemoglobin generation in vitro and in red blood cells. Methods in Enzymology, 231, 490–496.

    Article  PubMed  CAS  Google Scholar 

  50. Kuželová, K., Mrhalová, M., & Hrkal, Z. (1997). Kinetics of heme interaction with heme-binding proteins: The effect of heme aggregation state. Biochemica et Biophysica Acta, 1336, 497–501.

    Article  Google Scholar 

  51. Egawa, T., Shimada, H., & Ishimura, Y. (2000). Formation of compound I in the reaction of native myoglobins with hydrogen peroxide. Journal of Biological Chemistry, 275, 34858–34866.

    Article  PubMed  CAS  Google Scholar 

  52. Brown, N. A., King, R. F. G. J., Shillcock, M. E., & Brown, S. B. (1974). Haemoglobin catabolism: The role of ferrihaems in studies of the degradation pathway. Biochemical Journal, 137, 135–137.

    PubMed  CAS  Google Scholar 

  53. Brown, S. B., Dean, T. C., & Jones, P. (1970). Catalatic activity of iron(III)-centred catalysts: Role of dimerization in the catalytic action of ferrihaems. Biochemical Journal, 117, 741–744.

    PubMed  CAS  Google Scholar 

  54. Brown, S. B., Shillcock, M., & Jones, P. (1976). Equilibrium and kinetic studies of the aggregation of porphyrins in aqueous solution. Biochemical Journal, 153, 279–285.

    PubMed  CAS  Google Scholar 

  55. Graça-Souza, A. V., Maya-Monteiro, C., Paiva-Silva, G. O., Braz, G. R. C., Paes, M. C., Sorgine, M. H. F., et al. (2006). Adaptations against heme toxicity in blood-feeding arthropods. Insect Biochemistry and Molecular Biology, 36, 322–335.

    Article  PubMed  Google Scholar 

  56. Tekwani, B. L., & Walker, L. A. (2005). Targeting the hemozoin synthesis pathway for new antimalarial drug discovery: Technologies for in vitro β-hematin formation assay. Combinatorial Chemistry & High Throughput Screening, 8, 63–79.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles O. Nwamba.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nwamba, C.O., Chilaka, F.C. & Moosavi-Movahedi, A.A. Cation Modulation of Hemoglobin Interaction with Sodium n-Dodecyl Sulfate (SDS). III: Calcium Interaction with R- and Mixed Spin States of Hemoglobin S at pH 5.0: The Musical Chair Paradox. Cell Biochem Biophys 67, 547–555 (2013). https://doi.org/10.1007/s12013-013-9540-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-013-9540-9

Keywords

Navigation