Skip to main content
Log in

Influence of Glucose Concentration on the Membrane Stability of Human Erythrocytes

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The action of glucose as an osmolyte in relation to blood cells is not well-characterized in the literature. This study aimed to study the influence of glucose concentration on the stability of red blood cells. The stability of erythrocytes was evaluated by the half-transition point obtained from the curves of lysis induced by glucose in the absence of salt or by increase in medium hypotonicity in the absence and the presence of different concentrations of glucose. In the presence of 0.9 g/dl NaCl, there was no hemolysis with increasing concentration of glucose from 0 to 10 g/dl. In the absence of NaCl, the dependence of hemolysis with the 0–10 g/dl glucose was described by a decreasing sigmoid, with fully lysed and fully protected cells being encountered in the presence of 0–2 and 4–10 g/dl glucose, respectively. The possible origin of such stabilization effect is discussed with base of what is known about osmostabilization of biological complexes and about the influence of glucose on the rheological properties of erythrocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Borowitza, L. J., & Brown, A. D. (1974). The salt relations of marine and halophilic species of the intracellular green alga Dunaliella: The role of glycerol as a compatible solute. Archives of Microbiology, 96, 37–52.

    Article  Google Scholar 

  2. Bowlus, R. D., & Somero, G. N. (1979). Solute compatibility with enzyme function and structure: Rationales for the selection of osmotic and end-products of anaerobic metabolism in marine invertebrates. Journal of Experimental Zoology, 208, 137–151.

    Article  PubMed  CAS  Google Scholar 

  3. Pollard, A., & Wyn-Jones, R. G. (1979). Enzyme activities in concentrated solution of glycinebetaine and other solutes. Planta, 144, 291–298.

    Article  CAS  Google Scholar 

  4. Yancey, P. H. (1985). Organic osmotic effectors in cartilaginous fishes. In R. Gilles & M. Gilles-Ballien (Eds.), Transport processes, iono- and osmoregulation (pp. 424–436). Berlin: Springer-Verlag.

    Google Scholar 

  5. Santoro, M. M., Liu, Y., Khan, S. M. A., Hou, L. X., & Bolen, D. W. (1992). Increase thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry, 31, 5278–5283.

    Article  PubMed  CAS  Google Scholar 

  6. Yancey, P. H. (2001). Water stress, osmolytes and proteins. American Zoologist, 41, 699–709.

    Article  CAS  Google Scholar 

  7. Cunha, C. C., Arvelos, L. R., Costa, J. O., & Penha-Silva, N. (2007). Effects of glycerol on the thermal dependence of the stability of human erythrocytes. Journal of Bioenergetics and Biomembranes, 39, 341–347.

    Article  PubMed  CAS  Google Scholar 

  8. Penha-Silva, N., Arvelos, L. R., Cunha, C. C., Aversi-Ferreira, T. A., Gouvêa-Silva, L. F., Garrote-Filho, M. S., et al. (2008). Effects of glycerol and sorbitol on the thermal dependence of the lysis of human erythrocytes by ethanol. Bioelectrochemistry, 73, 23–29.

    Article  PubMed  CAS  Google Scholar 

  9. Gekko, K., & Timasheff, S. N. (1981). Mechanism of proteins stabilization by glycerol–preferential hydration in glycerol-water mixtures. Biochemistry, 20, 4667–4676.

    Article  PubMed  CAS  Google Scholar 

  10. Gekko, K., & Timasheff, S. N. (1981). Thermodynamic and kinetic examination of proteins stabilization by glycerol. Biochemistry, 20, 4677–4686.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, J. C., & Timasheff, S. N. (1981). The stabilization of proteins by sucrose. Journal of Biological Chemistry, 256, 7193–7201.

    PubMed  CAS  Google Scholar 

  12. Jaenicke, R., & Závodsky, P. (1990). Proteins under extreme physical conditions. Federation of European Biochemical Societies Letters, 268, 344–349.

    Article  PubMed  CAS  Google Scholar 

  13. Lien, Y. H. H., Pacelli, M. M., & Braun, E. J. (1993). Characterization of organic osmolytes in avian renal medulla—A nonurea osmotic gradient system. American Journal of Physiology, 264, R1045–R1049.

    PubMed  CAS  Google Scholar 

  14. Timasheff, S. N. (1993). The control of proteins stability and association by weak-interactions with water–how do solvents affect these processes. Annual Review of Biophysics and Biomolecular Structure, 22, 67–97.

    Article  PubMed  CAS  Google Scholar 

  15. Liu, Y., & Bolen, D. W. (1995). The peptide backbone plays a dominant role in protein stabilization by naturally occurring osmolytes. Biochemistry, 34, 12884–12891.

    Article  PubMed  CAS  Google Scholar 

  16. Taylor, L. S., York, P., Williams, A. C., Edwards, H. G. M., Mehta, C., Jackson, G. S., et al. (1995). Sucrose reduces the efficiency of protein denaturation by chaotropic agent. Biochimica et Biophysica Acta, 1253, 39–46.

    Article  PubMed  Google Scholar 

  17. Wang, A., & Bolen, D. W. (1997). A naturally occurring protective system in urea-rich cells: Mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry, 36, 9101–9108.

    Article  PubMed  CAS  Google Scholar 

  18. Timasheff, S. N. (1998). Control of protein stability and reactions by weakly interacting cosolvents: The simplicity of the complicated. Advances in Protein Chemistry, 51, 355–432.

    Article  PubMed  CAS  Google Scholar 

  19. Timasheff, S. N. (2002). Protein-solvent preferential interactions, protein hydration, and the modulation of biochemical reactions by solvent components. Proceedings of the National Academy of Sciences of the United States of America, 99, 9721–9726.

    Article  PubMed  CAS  Google Scholar 

  20. Boutron, P., & Arnaud, F. (1984). Comparison of the cryoprotection of red blood cells by 1,2-propanediol and glycerol. Cryobiology, 21, 348–358.

    Article  PubMed  CAS  Google Scholar 

  21. Pellerin-Mendes, C., Million, L., Marchand-Arvier, M., Labrude, P., & Vigneron, C. (1997). In vitro study of the effect of trehalose and dextran during freezing of human red blood cells in liquid nitrogen. Cryobiology, 35, 173–186.

    Article  PubMed  CAS  Google Scholar 

  22. Wagner, C. T., Martowicz, M. L., Livesey, S. A., & Connor, J. (2002). Biochemical stabilization enhances red blood cell recovery and stability following cryopreservation. Cryobiology, 45, 153–166.

    Article  PubMed  CAS  Google Scholar 

  23. Scott, K. L., Lecak, J., & Acker, J. P. (2005). Biopreservation of red blood cells: Past, present, and future. Transfusion Medicine Reviews, 19, 127–142.

    Article  PubMed  Google Scholar 

  24. de Freitas, M. V., Netto, R. C. M., Huss, J. C. C., de Souza, T. M. T., Costa, J. O., Firmino, C. B., et al. (2008). Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicology in Vitro, 22, 219–224.

    Article  PubMed  Google Scholar 

  25. Buttafava, A., Balduini, C., Minetti, G., & Paula, E. (2008). Resistance of human erythrocyte membranes to Triton X-100 and C12E8. Journal of Membrane Biology, 227, 39–48.

    PubMed  Google Scholar 

  26. Domingues, C. C., Malheiros, S. V. P., & de Paula, E. (2008). Solubilization of human erythrocyte membranes by ASB detergents. Brazilian Journal of Medical and Biological Research, 41, 758–764.

    Article  PubMed  CAS  Google Scholar 

  27. Fonseca, L., Arvelos, L., Netto, R., Lins, A., Garrote-Filho, M., & Penha-Silva, N. (2010). Influence of the albumin concentration and temperature on the lysis of human erythrocytes by sodium dodecyl sulfate. Journal of Bioenergetics and Biomembranes, 42, 413–418.

    Article  PubMed  CAS  Google Scholar 

  28. Penha-Silva, N., Firmino, C. B., de Freitas Reis, F. G., Huss, J. C. C., de Souza, T. M. T., de Freitas, M. V., et al. (2007). Influence of age on the stability of human erythrocyte membranes. Mechanisms of Ageing and Development, 128, 444–449.

    Article  PubMed  CAS  Google Scholar 

  29. de Freitas, M. V., de Oliveira, M. R., dos Santos, D. F., de Cássia Mascarenhas Netto, R., Fenelon, S. B., & Penha-Silva, N. (2010). Influence of the use of statin on the stability of erythrocyte membranes in multiple sclerosis. Journal of Membrane Biology, 233, 127–134.

    Article  PubMed  CAS  Google Scholar 

  30. Mansur, P. H. G., Cury, L. K. P., Leite, J. O. B., Pereira, A. A., Penha-Silva, N., & Andrade, A. O. (2010). The approximate entropy of the electromyographic signals of tremor correlates with the osmotic fragility of human erythrocytes. BioMedical Engineering OnLine, 9, 29.

    Article  PubMed  Google Scholar 

  31. Riquelme, B., Foresto, P., D’Arrigo, M., Valverde, J., & Rasia, R. (2005). A dynamic and stationary rheological study of erythrocytes incubated in a glucose medium. Journal of Biochemical and Biophysical Methods, 62, 131–141.

    Article  PubMed  CAS  Google Scholar 

  32. Shin, S., Ku, Y.-H., Suh, J.-S., & Singh, M. (2008). Rheological characteristics of erythrocytes incubated in glucose media. Clinical Hemorheology and Microcirculation, 38, 153–161.

    PubMed  CAS  Google Scholar 

  33. Fonseca, L. C., Correa, N. C. R., Garrote, M. D., Cunha, C. C., & Penha-Silva, N. (2006). Effects of the solvent composition on the stability of proteins in aqueous solutions. Química Nova, 29, 543–548.

    Article  CAS  Google Scholar 

  34. Bolen, D. W., & Baskakov, I. V. (2001). The osmophobic effect: Natural selection of a thermodynamic force in protein folding. Journal of Molecular Biology, 310, 955–963.

    Article  PubMed  CAS  Google Scholar 

  35. Wang, A., Robertson, A. D., & Bolen, D. W. (1995). Effects of a naturally-occurring compatible osmolyte on the internal dynamics of ribonuclease-A. Biochemistry, 34, 15096–15104.

    Article  PubMed  CAS  Google Scholar 

  36. Saunders, A. J., Davis-Searles, P. R., Allen, D. L., Pielak, G. J., & Erie, D. A. (2000). Osmolyte-induced changes in protein conformation equilibria. Biopolymers, 53, 293–307.

    Article  PubMed  CAS  Google Scholar 

  37. Qu, Y., Bolen, C. L., & Bolen, D. W. (1998). Osmolyte-driven contraction of a random coil protein. Proceedings of the National Academy of Sciences of the United States of America, 95, 9268–9273.

    Article  PubMed  CAS  Google Scholar 

  38. Bakaltcheva, I. B., Odeyale, C. O., & Spargo, B. J. (1996). Effects of alkanols, alkanediols and glycerol on red blood cell shape and hemolysis. Biochimica et Biophysica Acta, 1280, 73–80.

    Article  PubMed  Google Scholar 

  39. De Loecker, R., Gossens, W., Van Duppen, V., Verwilghen, R., & De Loecker, W. (1993). Osmotic effects of dilution on erythrocytes after freezing and thawing in glycerol-containing buffer. Cryobiology, 30, 279–285.

    Article  PubMed  Google Scholar 

  40. Lang, F., Busch, G. L., Ritter, M., Völkl, H., Waldegger, S., Gulbins, E., et al. (1998). Functional significance of cell volume regulatory mechanisms. Physiological Reviews, 78, 247–306.

    PubMed  CAS  Google Scholar 

  41. Bransky, A., Korin, N., Nemirovski, Y., & Dinnar, U. (2007). Correlation between erythrocytes deformability and size: A study using a microchannel based cell analyzer. Microvascular Research, 73, 7–13.

    Article  PubMed  Google Scholar 

  42. Fields, P. A. (2001). Protein function at thermal extremes: Balancing stability and flexibility. Comparative Biochemistry and Physiology Part A, 129, 417–431.

    Article  CAS  Google Scholar 

  43. Waugh, R. E., & Sarelius, I. H. (1996). Effects of lost surface area on red blood cells and red blood cell survival in mice. American Journal of Physiology, 271, C1847–C1852.

    PubMed  CAS  Google Scholar 

  44. Waugh, R. E., Narla, M., Jackson, C. W., Mueller, T. J., Suzuki, T., & Dale, G. L. (1992). Rheologic properties of senescent erythrocytes: Loss of surface area and volume with red blood cell age. Blood, 79, 1351–1358.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nilson Penha-Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemos, G.S.D., Márquez-Bernardes, L.F., Arvelos, L.R. et al. Influence of Glucose Concentration on the Membrane Stability of Human Erythrocytes. Cell Biochem Biophys 61, 531–537 (2011). https://doi.org/10.1007/s12013-011-9235-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-011-9235-z

Keywords

Navigation