Skip to main content
Log in

Persistent Alterations to the Gene Expression Profile of the Heart Subsequent to Chronic Doxorubicin Treatment

  • Published:
Cardiovascular Toxicology Aims and scope Submit manuscript

Abstract

Doxorubicin (DOX, Adriamycin®) is a potent antineoplastic agent used to treat a number of cancers. Despite its utility, DOX causes a cumulative, irreversible cardiomyopathy that may become apparent shortly after treatment or years subsequent to therapy. Numerous studies have been conducted to elucidate the basis of DOX cardiotoxicity, but the precise mechanism responsible remains elusive. This investigation was designed to assess global gene expression using microarrays in order to identify the full spectrum of potential molecular targets of DOX cardiotoxicity to further delineate the underlying pathological mechanism(s) responsible for this dose-limiting cardiomyopathy. Male, Sprague-Dawley rats received 6 weekly injections of 2 mg/kg (s.c.) DOX followed by a 5 week drug-free period prior to analysis of cardiac tissue transcripts. Ontological evaluation in terms of subcellular targets identified gene products involved in mitochondrial processes are significantly suppressed, consistent with the well-established persistent mitochondrial dysfunction. Further classification of genes into biochemical networks revealed several pathways modulated by DOX, including glycolysis and fatty acid metabolism, supporting the notion that mitochondria are key targets in DOX toxicity. In conclusion, this comprehensive transcript profile provides important insights into critical targets and molecular adaptations that characterize the persistent cardiomyopathy associated with long-term exposure to DOX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gewirtz, D. A. (1999). A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochemical Pharmacology, 57, 727–741.

    Article  PubMed  CAS  Google Scholar 

  2. al-Shabanah, O. A., Badary, O. A., Nagi, M. N., al-Gharably, N. M., al-Rikabi, A. C., & al-Bekairi, A. M. (1998). Thymoquinone protects against doxorubicin-induced cardiotoxicity without compromising its antitumor activity. Journal of Experimental and Clinical Cancer Research, 17, 193–198.

    CAS  Google Scholar 

  3. Bodley, A., Liu, L. F., Israel, M., Seshadri, R., Koseki, Y., Giuliani, F. C., Kirschenbaum, S., Silber, R., & Potmesil, M. (1989). DNA topoisomerase II-mediated interaction of doxorubicin and daunorubicin congeners with DNA. Cancer Research, 49, 5969–5978.

    PubMed  CAS  Google Scholar 

  4. Mettler, F. P., Young, D. M., & Ward, J. M. (1977). Adriamycin-induced cardiotoxicity (cardiomyopathy and congestive heart failure) in rats. Cancer Research, 37, 2705–2713.

    PubMed  CAS  Google Scholar 

  5. Von Hoff, D. D., Layard, M. W., Basa, P., Davis, H. L. Jr., Von Hoff, A. L., Rozencweig, M., & Muggia, F. M. (1979). Risk factors for doxorubicin-induced congestive heart failure. Annals of Internal Medicine, 91, 710–717.

    PubMed  CAS  Google Scholar 

  6. Lipshultz, S. E., Colan, S. D., Gelber, R. D., Perez-Atayde, A. R., Sallan, S. E., & Sanders, S. P. (1991). Late cardiac effects of doxorubicin therapy for acute lymphoblastic leukemia in childhood. The New England Journal of Medicine, 324, 808–815.

    Article  PubMed  CAS  Google Scholar 

  7. Sorensen, K., Levitt, G., Bull, C., Chessells, J., & Sullivan, I. (1997). Anthracycline dose in childhood acute lymphoblastic leukemia: Issues of early survival versus late cardiotoxicity. Journal of Clinical Oncology, 15, 61–68.

    PubMed  CAS  Google Scholar 

  8. Joyner, D. E., Bastar, J. D., & Randall, R. L. (2006). Doxorubicin induces cell senescence preferentially over apoptosis in the FU-SY-1 synovial sarcoma cell line. Journal of Orthopaedic Research, 24, 1163–1169.

    Article  PubMed  CAS  Google Scholar 

  9. Singal, P. K., Li, T., Kumar, D., Danelisen, I., & Iliskovic, N. (2000). Adriamycin-induced heart failure: Mechanism and modulation. Molecular and Cellular Biochemistry, 207, 77–86.

    Article  PubMed  CAS  Google Scholar 

  10. Wallace, K. B. (2003). Doxorubicin-induced cardiac mitochondrionopathy. Pharmacology & Toxicology, 93, 105–115.

    Article  CAS  Google Scholar 

  11. Jung, K., & Reszka, R. (2001). Mitochondria as subcellular targets for clinically useful anthracyclines. Advanced Drug Delivery Reviews, 49, 87–105.

    Article  PubMed  CAS  Google Scholar 

  12. Davies, K. J., & Doroshow, J. H. (1986). Redox cycling of anthracyclines by cardiac mitochondria. I. Anthracycline radical formation by NADH dehydrogenase. The Journal of Biological Chemistry, 261, 3060–3067.

    PubMed  CAS  Google Scholar 

  13. Doroshow, J. H., & Davies, K. J. (1986). Redox cycling of anthracyclines by cardiac mitochondria. II. Formation of superoxide anion, hydrogen peroxide, and hydroxyl radical. The Journal of Biological Chemistry, 261, 3068–3074.

    PubMed  CAS  Google Scholar 

  14. Fielden, M. R., & Zacharewski, T. R. (2001). Challenges and limitations of gene expression profiling in mechanistic and predictive toxicology. Toxicological Sciences, 60, 6–10.

    Article  PubMed  CAS  Google Scholar 

  15. Efferth T., & Oesch, F. (2004). Oxidative stress response of tumor cells: Microarray-based comparison between artemisinins and anthracyclines. Biochemical Pharmacology, 68, 3–10.

    Article  PubMed  CAS  Google Scholar 

  16. Lien, Y. C., Noel, T., Liu, H., Stromberg, A. J., Chen, K. C., & St Clair, D. K. (2006). Phospholipase C-delta1 is a critical target for tumor necrosis factor receptor-mediated protection against adriamycin-induced cardiac injury. Cancer Research, 66, 4329–4338.

    Article  PubMed  CAS  Google Scholar 

  17. Bolstad, B. M., Irizarry, R. A., Astrand, M., & Speed, T. P. (2003). A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics, 19, 185–193.

    Article  PubMed  CAS  Google Scholar 

  18. Doniger, S. W., Salomonis, N., Dahlquist, K. D., Vranizan, K., Lawlor, S. C., & Conklin, B. R. (2003). MAPPFinder: Using Gene Ontology and GenMAPP to create a global gene-expression profile from microarray data. Genome Biology, 4, R7.

    Article  PubMed  Google Scholar 

  19. Tabibiazar, R., Wagner, R. A., Liao, A., & Quertermous, T. (2003). Transcriptional profiling of the heart reveals chamber-specific gene expression patterns. Circulation Research, 93, 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  20. Sharma, U. C., Pokharel, S., Evelo, C. T., & Maessen, J. G. (2005). A systematic review of large scale and heterogeneous gene array data in heart failure. Journal of Molecular and Cellular Cardiology, 38, 425–432.

    Article  PubMed  CAS  Google Scholar 

  21. Ueno, S., Ohki, R., Hashimoto, T., Takizawa, T., Takeuchi, K., Yamashita, Y., Ota, J., Choi, Y. L., Wada, T., Koinuma, K., Yamamoto, K., Ikeda, U., Shimada, K., & Mano, H. (2003). DNA microarray analysis of in vivo progression mechanism of heart failure. Biochemical and Biophysical Research Communications, 307, 771–777.

    Article  PubMed  CAS  Google Scholar 

  22. Kong, S. W., Bodyak, N., Yue, P., Liu, Z., Brown, J., Izumo, S., & Kang, P. M. (2005). Genetic expression profiles during physiological and pathological cardiac hypertrophy and heart failure in rats. Physiological Genomics, 21, 34–42.

    Article  PubMed  CAS  Google Scholar 

  23. Barth, A. S., Kuner, R., Buness, A., Ruschhaupt, M., Merk, S., Zwermann, L., Kaab, S., Kreuzer, E., Steinbeck, G., Mansmann, U., Poustka, A., Nabauer, M., & Sultmann, H. (2006). Identification of a common gene expression signature in dilated cardiomyopathy across independent microarray studies. Journal of the American College of Cardiology, 48, 1610–1617.

    Article  PubMed  CAS  Google Scholar 

  24. Stanley, W. C., Recchia, F. A., & Lopaschuk, G. D. (2005). Myocardial substrate metabolism in the normal and failing heart. Physiological Reviews, 85, 1093–1129.

    Article  PubMed  CAS  Google Scholar 

  25. Huss, J. M., & Kelly, D. P. (2005). Mitochondrial energy metabolism in heart failure: A question of balance. The Journal of Clinical Investigation, 115, 547–555.

    Article  PubMed  CAS  Google Scholar 

  26. Lehman, J. J., & Kelly, D. P. (2002). Gene regulatory mechanisms governing energy metabolism during cardiac hypertrophic growth. Heart Failure Reviews, 7, 175–185.

    Article  PubMed  CAS  Google Scholar 

  27. Ozawa, T., Tanaka, M., Sugiyama, S., Hattori, K., Ito, T., Ohno K., Takahashi, A., Sato, W., Takada, G., Mayumi B, et al. (1990). Multiple mitochondrial DNA deletions exist in cardiomyocytes of patients with hypertrophic or dilated cardiomyopathy. Biochemical and Biophysical Research Communications, 170, 830–836.

    Article  PubMed  CAS  Google Scholar 

  28. Arbustini, E., Diegoli, M., Fasani, R., Grasso, M., Morbini, P., Banchieri, N., Bellini, O., Dal Bello, B., Pilotto, A., Magrini, G., Campana, C., Fortina, P., Gavazzi, A., Narula, J., & Vigano, M. (1998). Mitochondrial DNA mutations and mitochondrial abnormalities in dilated cardiomyopathy. American Journal of Pathology, 153, 1501–1510.

    PubMed  CAS  Google Scholar 

  29. Sack, M. N., Rader, T. A., Park, S., Bastin, J., McCune, S. A., & Kelly, D. P. (1996). Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation, 94, 2837–2842.

    PubMed  CAS  Google Scholar 

  30. Merante, F., Myint, T., Tein, I., Benson, L., & Robinson, B. H. (1996). An additional mitochondrial tRNA(Ile) point mutation (A-to-G at nucleotide 4295) causing hypertrophic cardiomyopathy. Human Mutation, 8, 216–22.

    Article  PubMed  CAS  Google Scholar 

  31. Merante, F., Tein, I., Benson, L., & Robinson, B. H. (1994). Maternally inherited hypertrophic cardiomyopathy due to a novel T-to-C transition at nucleotide 9997 in the mitochondrial tRNA(glycine) gene. American Journal of Human Genetics, 55, 437–446.

    PubMed  CAS  Google Scholar 

  32. Zeviani, M., Gellera, C., Antozzi, C., Rimoldi, M., Morandi, L., Villani, F., Tiranti, V., & DiDonato, S. (1991). Maternally inherited myopathy and cardiomyopathy: Association with mutation in mitochondrial DNA tRNA(Leu)(UUR). Lancet, 338, 143–147.

    Article  PubMed  CAS  Google Scholar 

  33. Nojiri, H., Shimizu, T., Funakoshi, M., Yamaguchi, O., Zhou, H., Kawakami, S., Ohta, Y., Sami, M., Tachibana, T., Ishikawa, H., Kurosawa, H., Kahn, R. C., Otsu, K., & Shirasawa, T. (2006). Oxidative stress causes heart failure with impaired mitochondrial respiration. Journal of Biological Chemistry, 281, 33789–33801.

    Article  PubMed  CAS  Google Scholar 

  34. Hansson, A., Hance, N., Dufour, E., Rantanen, A., Hultenby, K., Clayton, D. A., Wibom, R., & Larsson, N. G. (2004). A switch in metabolism precedes increased mitochondrial biogenesis in respiratory chain-deficient mouse hearts. Proceedings of the National Academy of Sciences of USA, 101, 3136–3141.

    Article  CAS  Google Scholar 

  35. Berthiaume, J. M., & Wallace, K. B. (2007). Adriamycin-induced oxidative mitochondrial cardiotoxicity. Cell Biology and Toxicology, 23, 15–25.

    Article  PubMed  CAS  Google Scholar 

  36. Palmeira, C. M., Serrano, J., Kuehl, D. W., & Wallace, K. B. (1997). Preferential oxidation of cardiac mitochondrial DNA following acute intoxication with doxorubicin. Biochimica et Biophysica Acta, 1321, 101–106.

    Article  PubMed  CAS  Google Scholar 

  37. Serrano, J., Palmeira, C. M., Kuehl, D. W., & Wallace, K. B. (1999). Cardioselective and cumulative oxidation of mitochondrial DNA following subchronic doxorubicin administration. Biochimica et Biophysica Acta, 1411, 201–205.

    Article  PubMed  CAS  Google Scholar 

  38. Tokarska-Schlattner, M., Wallimann, T., & Schlattner, U. (2006). Alterations in myocardial energy metabolism induced by the anti-cancer drug doxorubicin. Comptes Rendus Biologies, 329, 657–668.

    Article  PubMed  CAS  Google Scholar 

  39. Tokarska-Schlattner, M., Zaugg, M., da Silva, R., Lucchinetti E., Schaub, M. C., Wallimann, T., & Schlattner, U. (2005). Acute toxicity of doxorubicin on isolated perfused heart: Response of kinases regulating energy supply. American Journal of Physiology. Heart and Circulatory Physiology, 289, H37–H47.

    Article  PubMed  CAS  Google Scholar 

  40. Zhou, S., Palmeira, C. M., & Wallace, K. B. (2001). Doxorubicin-induced persistent oxidative stress to cardiac myocytes. Toxicology Letters, 121, 151–157.

    Article  PubMed  CAS  Google Scholar 

  41. Kiyomiya, K., Matsuo, S., & Kurebe, M. (2001). Differences in intracellular sites of action of Adriamycin in neoplastic and normal differentiated cells. Cancer Chemotherapy and Pharmacology, 47, 51–56.

    Article  PubMed  CAS  Google Scholar 

  42. Salvatorelli, E., Guarnieri, S., Menna, P., Liberi, G., Calafiore, A. M., Mariggio, M. A., Mordente, A., Gianni, L., & Minotti, G. (2006). Defective one- or two-electron reduction of the anticancer anthracycline epirubicin in human heart. Relative importance of vesicular sequestration and impaired efficiency of electron addition. Journal of Biological Chemistry, 281, 10990–11001.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work described herein was funded by a grant through the NIH Heart, Lung and Blood Institute (HL58016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kendall B. Wallace.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berthiaume, J.M., Wallace, K.B. Persistent Alterations to the Gene Expression Profile of the Heart Subsequent to Chronic Doxorubicin Treatment. Cardiovasc Toxicol 7, 178–191 (2007). https://doi.org/10.1007/s12012-007-0026-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12012-007-0026-0

Keywords

Navigation