Skip to main content
Log in

Seasonal Variability of Elemental Composition and Phytochemical Analysis of Moringa oleifera Leaves Using Energy-Dispersive X-ray Fluorescence and Other Related Methods

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The elemental contents and the phytochemical components of Moringa oleifera are crucial for nutrition and medical purposes. Therefore, the monthly and seasonal variations of the elemental composition and phytochemical analysis of Moringa oleifera leaves collected from the same ecological area have been investigated. For this purpose, Moringa oleifera leaves were collected monthly from the same tree’s branches during the whole year from January 2019 to December 2019. A non-destructive elemental analysis technique was used, namely energy-dispersive X-ray fluorescence spectrometry. The seasonal variations are different from one season to another. The highest concentrations of Mo, Cr, Fe, Ti, and Si were found during winter, whereas the highest concentrations of Br, Cl, and Cu were found during the summer seasons. Based on Pearson’s correlation analysis, a strong correlation between Ca and Sr was found, whereas Sr has a negative correlation with other detected elements. Similarly, Cu and Zn as well as Br and Cl have a strong correlation. Remarkable different concentrations were found during May which has the lowest positive correlation. The phytochemical analysis revealed that Moringa oleifera leaves collected during the spring season resulted in the highest chlorophyll content, phenol content, and the greatest scavenging activity. Therefore, the mineral contents and phytochemical compounds are affected by the changing of the seasons of the year. Collectively, the current results are useful for optimizing the harvest time of Moringa oleifera leaves with respect to the quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ramachandran C, Peter K, Gopalakrishnan P (1980) Drumstick (Moringa oleifera): a multipurpose Indian vegetable. Econ Bot 34:276–283

    Article  CAS  Google Scholar 

  2. El-Awady MA, Hassan MM, Abdel-Hameed ES, Gaber A (2016) Comparison of the antioxidant activities, phenolic and flavonoids contents of the leaves-crud extracts of Moringa peregrine and Moringa oleifera. Int J Biosci 8(1):55–62

    Article  CAS  Google Scholar 

  3. Gopalakrishnan L, Doriya K, Kumar DS (2016) Moringa oleifera: a review on nutritive importance and its medicinal application. Food Sci Human Wellness 5(2):49–56. https://doi.org/10.1016/j.fshw.2016.04.001

    Article  Google Scholar 

  4. Hassan FAS, Fetouh MI (2019) Does moringa leaf extract have preservative effect improving the longevity and postharvest quality of gladiolus cut spikes? Sci Hortic 250:287–293. https://doi.org/10.1016/j.scienta.2019.02.059

    Article  CAS  Google Scholar 

  5. Fahey JW (2005) Moringa oleifera: a review of the medical evidence for its nutritional, therapeutic, and prophylactic properties. Part 1. Trees Life J 1:1–15

    Google Scholar 

  6. Patel S, Thakur A, Chandy A, Manigauha A (2010) Moringa oleifera: a review of there medicinal and economical importance to the health and nation. Drug Invent Today 2(7):339–342

    Google Scholar 

  7. Yisehak K, Solomon M, Tadelle M (2011) Contribution of Moringa (Moringa stenopetala, Bac.), a highly nutritious vegetable tree, for food security in South Ethiopia: a review. Asian J Appl Sci 4:477–488. https://doi.org/10.3923/ajaps.2011.477.488

    Article  CAS  Google Scholar 

  8. Elayaperumal M, Vedachalam Y, Loganathan D, Kumaravelu TA, Anusuya GS, Kennedy J (2020) Ion beam analysis of proton-induced X-ray emission (PIXE) techniques for elemental investigation of young stage neem leaf of southern India, Tamil Nadu. Biol Trace Elem Res. https://doi.org/10.1007/s12011-020-02443-x

  9. Phiri C, Mbewe D (2010) Influence of Moringa oleifera leaf extracts on germination and seedling survival of three common legumes. Int J Agric Biol 12(2):315–317

    Google Scholar 

  10. Carillo P (2018) GABA shunt in durum wheat. Front Plant Sci 9(100):100. https://doi.org/10.3389/fpls.2018.00100

    Article  PubMed  PubMed Central  Google Scholar 

  11. Tesfay SZ, Magwaza LS (2017) Evaluating the efficacy of moringa leaf extract, chitosan and carboxymethyl cellulose as edible coatings for enhancing quality and extending postharvest life of avocado (Persea americana Mill.) fruit. Food Packag Shelf Life 11(C):40–48. https://doi.org/10.1016/j.fpsl.2016.12.001

    Article  Google Scholar 

  12. Hassan FAS, Mazrou R, Gaber A, Hassan MM (2020) Moringa extract preserved the vase life of cut roses through maintaining water relations and enhancing antioxidant machinery. Postharvest Biol Technol 164:111156. https://doi.org/10.1016/j.postharvbio.2020.111156

    Article  CAS  Google Scholar 

  13. Hassan F, Ali E (2014) Effects of salt stress on growth, antioxidant enzyme activity and some other physiological parameters in jojoba [Simmondsia chinensis (link) Schneider] plant. Aust J Crop Sci 8(12):1615–1624

    Google Scholar 

  14. Hassan FAS, Ali EF, Alamer KH (2018) Exogenous application of polyamines alleviates water stress-induced oxidative stress of Rosa damascena Miller var. trigintipetala Dieck. S Afr J Bot 116:96–102. https://doi.org/10.1016/j.sajb.2018.02.399

    Article  CAS  Google Scholar 

  15. Ali EF, Hassan FAS, Elgimabi M (2018) Improving the growth, yield and volatile oil content of Pelargonium graveolens L. Herit by foliar application with moringa leaf extract through motivating physiological and biochemical parameters. S Afr J Bot 119:383–389. https://doi.org/10.1016/j.sajb.2018.10.003

    Article  Google Scholar 

  16. Anjorin TS, Ikokoh P, Okolo S (2010) Mineral composition of Moringa oleifera leaves, pods and seeds from two regions in Abuja, Nigeria. Int J Agric Biol 12(3):431–434

    CAS  Google Scholar 

  17. Aslam M, Anwar F, Nadeem R, Rashid U, Kazi T, Nadeem M (2005) Mineral composition of Moringa oleifera leaves and pods from different regions of Punjab, Pakistan. Asian J Plant Sci 4(4):417–421

    Article  CAS  Google Scholar 

  18. Asante WJ, Nasare IL, Tom-Dery D, Ochire-Boadu K, Kentil KB (2013) Nutrient composition of Moringa oleifera leaves from two agro ecological zones in Ghana African. J Plant Sci 8(1):65–71. https://doi.org/10.5897/AJPS2012.0727

    Article  CAS  Google Scholar 

  19. Rajurkar NS, Damame MM (1998) Mineral content of medicinal plants used in the treatment of diseases resulting from urinary tract disorders. Appl Radiat Isot 49(7):773–776. https://doi.org/10.1016/S0969-8043(97)00296-0

    Article  CAS  PubMed  Google Scholar 

  20. Al Kharusi L, Elmardi M, Ali A, Al-Said FAJ, Abdulbassit KM, Al-Rawahy S (2009) Effect of mineral and organic fertilizers on the chemical characteristics and quality of date fruits. Int J Agric Biol 11:290–296

    Google Scholar 

  21. Amabye TG (2015) Chemical compositions and nutritional value of Moringa oleifera available in the market of Mekelle. J Food Nutr Sci 3(5):187–190. https://doi.org/10.11648/j.jfns.20150305.14

    Article  CAS  Google Scholar 

  22. Shaltout AA, Moharram MA, Mostafa NY (2012) Wavelength dispersive X-ray fluorescence analysis using fundamental parameter approach of Catha edulis and other related plant samples. Spectrochim Acta B At Spectrosc 67:74–78

    Article  CAS  Google Scholar 

  23. Shaltout AA, Abdel-Hameed ES, Salman M, Kregsamer P, Wobrauschek P, Streli C (2018) Method development and quantitative elemental analysis of Mentha longifolia L. leaves from Saudi Arabia by total reflection X-ray fluorescence. Anal Lett 51(9):1433–1444

    Article  CAS  Google Scholar 

  24. Shahidi F, Janitha PK, Wanasundara PD (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32(1):67–103. https://doi.org/10.1080/10408399209527581

    Article  CAS  PubMed  Google Scholar 

  25. Exarchou V, Nenadis N, Tsimidou M, Gerothanassis IP, Troganis A, Boskou D (2002) Antioxidant activities and phenolic composition of extracts from Greek oregano, Greek sage, and summer savory. J Agric Food Chem 50(19):5294–5299. https://doi.org/10.1021/jf020408a

    Article  CAS  PubMed  Google Scholar 

  26. Rydberg J (2014) Wavelength dispersive X-ray fluorescence spectroscopy as a fast, non-destructive and cost-effective analytical method for determining the geochemical composition of small loose-powder sediment samples. J Paleolimnol 52(3):265–276. https://doi.org/10.1007/s10933-014-9792-4

    Article  Google Scholar 

  27. Metzner H, Rau H, Senger H (1965) Unter suchungen zur synchronisier barteit einzelner pigmentan angel mutanten von chlorela. Planta 65:186–194

    Article  CAS  Google Scholar 

  28. McDonald S, Prenzler PD, Antolovich M, Robards K (2001) Phenolic content and antioxidant activity of olive extracts. Food Chem 73(1):73–84. https://doi.org/10.1016/s0308-8146(00)00288-0

    Article  CAS  Google Scholar 

  29. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30. https://doi.org/10.1016/s0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  30. Ebel H (1999) X-ray tube spectra. X-Ray Spectrom 28(4):255–266. https://doi.org/10.1002/(sici)1097-4539(199907/08)28:4<255::aid-xrs347>3.0.co;2-y

    Article  CAS  Google Scholar 

  31. Shaltout AA, Dabi MM, Ibrahim MM, Al-Ghamdi AS, Elnagar E (2020) Applicability of low-cost binders for the quantitative elemental analysis of urinary stones using EDXRF based on fundamental parameter approach. Biol Trace Elem Res 195(2):417–426. https://doi.org/10.1007/s12011-019-01884-3

    Article  CAS  PubMed  Google Scholar 

  32. Susanto H, Taufiq A, Sunaryono S, Soontaranon S, Hariyanto YA, Mawardi A, Adreyanto N, Yunisa D, Rufiandita F, Nizarghazi F, Alifi G, Putri L N, Kurnia S D M, and Sumardi (2018) Moringa oleiferaleaf powder Madura variety: characterization and biomaterials property for biomedical and nanotechnology application. In J Phys Conf Ser 1093:012007. https://doi.org/10.1088/1742-6596/1093/1/012007

  33. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92(4):487–511. https://doi.org/10.1093/aob/mcg164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Prajapati K, Modi HA (2012) The importance of potassium in plant growth - a review. Indian J Plant Sci 1(02–03):177–186

    Google Scholar 

  35. Duke SH, Reisenauer HM (1986) Roles and requirements of sulfur in plant nutrition. Sulfur Agric Wiley. https://doi.org/10.2134/agronmonogr27.c4

  36. Epstein E (1999) SILICON. Annu Rev Plant Physiol Plant Mol Biol 50(1):641–664. https://doi.org/10.1146/annurev.arplant.50.1.641

    Article  CAS  PubMed  Google Scholar 

  37. Romero A, Munévar F, Cayón G (2011) Silicon and plant diseases. A review. Agronomía Colombiana 29:473–480

    Google Scholar 

  38. Tubana BS, Babu T, Datnoff LE (2016) A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci 181(9/10)

  39. Ambi A, Abdurahman EM, Katsayal UA, Sule MI, Pateh UU, Ibrahim NDG (2011) Toxicity evaluation of Moringa oleifera leaves. Int J Pharm Res Innov 4:22–24

    Google Scholar 

  40. Land M, Ingri J, Andersson PS, Öhlander B (2000) Ba/Sr, Ca/Sr and 87Sr/86Sr ratios in soil water and groundwater: implications for relative contributions to stream water discharge. Appl Geochem 15(3):311–325. https://doi.org/10.1016/S0883-2927(99)00054-2

    Article  CAS  Google Scholar 

  41. Pett-Ridge JC, Derry LA, Barrows JK (2009) Ca/Sr and 87Sr/86Sr ratios as tracers of Ca and Sr cycling in the Rio Icacos watershed, Luquillo Mountains, Puerto Rico. Chem Geol 267(1):32–45. https://doi.org/10.1016/j.chemgeo.2008.11.022

    Article  CAS  Google Scholar 

  42. van der Ent A, Baker AJ, Reeves RD, Pollard AJ, Schat H (2015) Commentary: toward a more physiologically and evolutionarily relevant definition of metal hyperaccumulation in plants. Front Plant Sci 6:554

    PubMed  PubMed Central  Google Scholar 

  43. Burkhead JL, Gogolin Reynolds KA, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182(4):799–816. https://doi.org/10.1111/j.1469-8137.2009.02846.x

    Article  CAS  PubMed  Google Scholar 

  44. Cohu CM, Pilon M (2010) Cell biology of copper. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Plant Cell Monographs, vol 17. Springer, Berlin. https://doi.org/10.1007/978-3-642-10613-2_3

    Chapter  Google Scholar 

  45. Hassan FAS, Ismail IA, Mazrou R, Hassan M (2020) Applicability of inter-simple sequence repeat (ISSR), start codon targeted (SCoT) markers and ITS2 gene sequencing for genetic diversity assessment in Moringa oleifera Lam. J Appl Res Med Aromatic Plants 18:100256. https://doi.org/10.1016/j.jarmap.2020.100256

    Article  Google Scholar 

  46. Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates Inc, Publishers, Sunderland

    Google Scholar 

  47. Cabot C, Martos S, Llugany M, Gallego B, Tolrà R, Poschenrieder C (2019) A role for zinc in plant defense against pathogens and herbivores. Front Plant Sci 10(1171). https://doi.org/10.3389/fpls.2019.01171

  48. Hambidge M, Cousins RJ, Costello RB (2000) Introduction. J Nutr 130(5):1341S–1343S. https://doi.org/10.1093/jn/130.5.1341S

    Article  CAS  PubMed  Google Scholar 

  49. Gupta SK, Rai AK, Kanwar SS, Sharma TR (2012) Comparative analysis of zinc finger proteins involved in plant disease resistance. PLoS One 7(8):e42578. https://doi.org/10.1371/journal.pone.0042578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hojyo S, Fukada T (2016) Roles of zinc signaling in the immune system. J Immunol Res 2016:6762343–6762321. https://doi.org/10.1155/2016/6762343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gololo SS, Shai LJ, Agyei NM, Mogale MA (2016) Effect of seasonal changes on the quantity of phytochemicals in the leaves of three medicinal plants from Limpopo province, South Africa. J Pharmacogn Phytother 8(9):168–172

    CAS  Google Scholar 

  52. Usano-Alemany J, Palá-Paúl J, Rodríguez MS, Herraiz-Peñalver D (2014) Chemical description and essential oil yield variability of different accessions of Salvia lavandulifolia. Nat Prod Commun 9(2):273–276

    CAS  PubMed  Google Scholar 

  53. Dubey SU, Kapoor MK (2017) Monthly variation and impact of pollution on the nutritional value of Moringa oleifera (Lam.) leaves. Int J Bioassays 6(10):5535–5542

    Article  CAS  Google Scholar 

  54. García-Plazaola JI, Becerril JM (2001) Seasonal changes in photosynthetic pigments and antioxidants in beech (<emph type="2">Fagus sylvatica</emph>) in a Mediterranean climate: implications for tree decline diagnosis. Funct Plant Biol 28(3):225–232. https://doi.org/10.1071/PP00119

    Article  Google Scholar 

  55. Elsharkawy E, Nour El-Din MN (2018) Effect of seasonal variations on the yield of essential oil and antioxidant of Achillea fragrantissima (Forssk) Sch. Bip African J Biotechnol 17(28):892–897

    Article  CAS  Google Scholar 

  56. Kamatou GPP, Van Zyl RL, Van Vuuren SF, Figueiredo AC, Barroso JG, Pedro LG, Viljoen AM (2008) Seasonal variation in essential oil composition, oil toxicity and the biological activity of solvent extracts of three South African Salvia species. S Afr J Bot 74(2):230–237. https://doi.org/10.1016/j.sajb.2007.08.002

    Article  CAS  Google Scholar 

  57. Wahba HE, Sarhan AZ, Salama AB, Sharaf-Eldin MA, Gad HM (2017) Effect of seasonal variation on the growth and chemical composition of Cynara cardunculus L. Plants J Mater Environ Sci 8(1):318–323

    CAS  Google Scholar 

Download references

Funding

Dr. Fahmy A. S. Hassan acknowledges Taif University Researchers Supporting Project number (TURSP-2020/143), Taif University, Taif, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdallah A. Shaltout.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaltout, A.A., Hassan, F.A.S. Seasonal Variability of Elemental Composition and Phytochemical Analysis of Moringa oleifera Leaves Using Energy-Dispersive X-ray Fluorescence and Other Related Methods. Biol Trace Elem Res 199, 4319–4329 (2021). https://doi.org/10.1007/s12011-020-02523-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02523-y

Keywords

Navigation