Skip to main content
Log in

Synergistic Effects of Dietary Selenomethionine and Vitamin C on the Immunity, Antioxidant Status, and Intestinal Microbiota in Sea Cucumber (Apostichopus japonicus)

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A 30-day feeding trial was carried out to investigate the interactive effects of dietary selenium (selenomethionine) and vitamin C (Vc) in Apostichopus japonicus. Two selenium (0 and 5 mg/kg) and three vitamin C (0, 5000, and 10,000 mg/kg) combined groups of feed were formulated (Designated as LSeLVc, LSeMVc, LSeHVc, HSeLVc, HSeMVc and HSeHVc, respectively) and fed the sea cucumbers. Our results showed no significant effects on the growth-related parameters in sea cucumber (P > 0.05). Furthermore, the reciprocal action between Se and Vc had significant (P < 0.05) effects on Se accumulation in the respiratory tree and intestines. Also, the lysozyme, glutathione peroxidase activity, and the relative expression levels such as LZM, GPX, Hsp70, and Hsp90 in different tissues were significantly increased in the group of sea cucumber fed diet with 5 mg Se in combination with 5000 mg Vc compared with the control group (P < 0.05). However, MDA and H2O2 contents in the body wall were significantly reduced in the HSeHVc group (P < 0.05). In addition, analysis of intestinal flora revealed that Haloferula abundance was highest in the LSeMVc group than other treatment groups, and Vibrio abundance was decreased with combined Se and Vc supplement. Finally, the species diversity of the gut microbial community of sea cucumber in HSeMVc group was lower than those in other treatment groups. The results showed that the interaction of selenium and vitamin C had positive effects on improving the immune status, antioxidant capacity, and digestive ability of A. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Xu C, Zhang R, Wen Z (2018) Bioactive compounds and biological functions of sea cucumbers as potential functional foods. J Funct Foods 49:73–84

    Article  CAS  Google Scholar 

  2. Purcell SW, Lovatelli A, Vasconcellos M, Ye Y (2010) Managing sea cucumber fisheries with an ecosystem approach. Food And Agriculture Organization of The United Nations, Rome

    Google Scholar 

  3. Mora JR, Iwata M, Von Andrian UH (2008) Vitamin effects on the immune system: vitamins a and D take Centre stage. Nat Rev Immunol 8(9):685–698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brambilla D, Mancuso C, Scuderi MR, Bosco P, Cantarella G, Lempereur L, Di Benedetto G, Pezzino S, Bernardini R (2008) The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. Nutr J 7(1):29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Garcia G, Dogi C, De Moreno de LeBlanc A, Greco C, Cavaglieri L (2016) Gut-borne Saccharomyces cerevisiae, a promising candidate for the formulation of feed additives, modulates immune system and gut microbiota. Benefic Microbes 7(5):659–668

    Article  CAS  Google Scholar 

  6. Gharekhani A, Takami GA, Tukmechi A, Afsharnasab M, Agh N (2015) Effect of dietary supplementation with zinc enriched yeast (Saccharomyces cerevisiae) on immunity of rainbow trout (Oncorhynchus mykiss). Iran J Vet Res 16(3):278–282

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Khan KU, Zuberi A, Nazir S, Ullah I, Jamil Z, Sarwar H (2017) Synergistic effects of dietary nano selenium and vitamin C on growth, feeding, and physiological parameters of mahseer fish (Tor putitora). Aquacult Rep 5:70–75

    Article  Google Scholar 

  8. Saffari S, Keyvanshokooh S, Zakeri M, Johari S, Pasha-Zanoosi H (2017) Effects of different dietary selenium sources (sodium selenite, selenomethionine and nanoselenium) on growth performance, muscle composition, blood enzymes and antioxidant status of common carp (Cyprinus carpio). Aquac Nutr 23(3):611–617

    Article  CAS  Google Scholar 

  9. Wang L, Wu L, Liu Q, Zhang D, Yin J, Xu Z, Zhang X (2018) Improvement of flesh quality in rainbow trout (Oncorhynchus mykiss) fed supranutritional dietary selenium yeast is associated with the inhibited muscle protein degradation. Aquac Nutr 24(4):1351–1360

    Article  CAS  Google Scholar 

  10. Wang C, Lovell RT (1997) Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus). Aquaculture 152(1–4):223–234

    Article  CAS  Google Scholar 

  11. Bosello-Travain V, Conrad M, Cozza G, Negro A, Quartesan S, Rossetto M, Roveri A, Toppo S, Ursini F, Zaccarin M (2013) Protein disulfide isomerase and glutathione are alternative substrates in the one Cys catalytic cycle of glutathione peroxidase 7. Biochimica et Biophysica Acta (BBA)-General Subjects 1830(6):3846–3857

    Article  CAS  Google Scholar 

  12. Lin YH, Shiau SY (2005) Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus. Aquaculture 250(1–2):356–363

    Article  CAS  Google Scholar 

  13. Kumar N, Krishnani KK, Singh NP (2018) Comparative study of selenium and selenium nanoparticles with reference to acute toxicity, biochemical attributes, and histopathological response in fish. Environ Sci Pollut Res 25(9):8914–8927

    Article  CAS  Google Scholar 

  14. Janz DM, DeForest DK, Brooks ML, Chapman PM, Gilron G, Hoff D, Hopkins WA, McIntyre DO, Mebane CA, Palace VP (2010) Selenium toxicity to aquatic organisms. Ecol Assess Selenium Aquat Environ 141–231

  15. Leal E, Zarza C, Tafalla C (2017) Effect of vitamin C on innate immune responses of rainbow trout (Oncorhynchus mykiss) leukocytes. Fish Shellfish Immunol 67:179–188

    Article  CAS  PubMed  Google Scholar 

  16. Sato P, Nishikimi M, Udenfriend S (1976) Is L-gulonolactone-oxidase the only enzyme missing in animals subject to scurvy? Biochem Biophys Res Commun 71(1):293–299

    Article  CAS  PubMed  Google Scholar 

  17. Carr AC, Maggini S (2017) Vitamin C and immune function. Nutrients 9(11):1211

    Article  PubMed Central  CAS  Google Scholar 

  18. Dabrowski K (2001) History, present and future of ascorbic acid research in aquatic organisms. In: Ascorbic Acid in Aquatic Organisms Status and Perspectives. CRC Press Boca Raton, pp. 255–277

  19. Wang X, Kim K-W, Bai SC, Huh M-D, Cho B-Y (2003) Effects of the different levels of dietary vitamin C on growth and tissue ascorbic acid changes in parrot fish (Oplegnathus fasciatus). Aquaculture 215(1–4):203–211

    Article  CAS  Google Scholar 

  20. Hossain MS, Koshio S, Ishikawa M, Yokoyama S, Sony NM, Dossou S, Wang W (2018) Influence of dietary inosine and vitamin C supplementation on growth, blood chemistry, oxidative stress, innate and adaptive immune responses of red sea bream, Pagrus major juvenile. Fish Shellfish Immunol 82:92–100

    Article  CAS  PubMed  Google Scholar 

  21. Lin MF, Shiau SY (2005) Dietary L-ascorbic acid affects growth, nonspecific immune responses and disease resistance in juvenile grouper, Epinephelus malabaricus. Aquaculture 244(1–4):215–221

    Article  CAS  Google Scholar 

  22. Liu Y, Chi L, Feng L, Jiang J, Jiang WD, Hu K, Li SH, Zhou XQ (2011) Effects of graded levels of dietary vitamin C on the growth, digestive capacity and intestinal microflora of juvenile Jian carp (Cyprinus carpio var. Jian). Aquac Res 42(4):534–548

    Article  CAS  Google Scholar 

  23. Dawood MAO, Zommara M, Eweedah NM, Helal AI, Aboel-Darag MA (2020) The potential role of nano-selenium and vitamin C on the performances of Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res 27:9843–9852 1–10

    Article  CAS  Google Scholar 

  24. Wang J, Ren T, Wang F, Han Y, Liao M, Jiang Z, Liu H (2016) Effects of dietary cadmium on growth, antioxidants and bioaccumulation of sea cucumber (Apostichopus japonicus) and influence of dietary vitamin C supplementation. Ecotoxicol Environ Saf 129:145–153

    Article  CAS  PubMed  Google Scholar 

  25. Dimitroglou A, Merrifield DL, Spring P, Sweetman J, Moate R, Davies SJ (2010) Effects of mannan oligosaccharide (MOS) supplementation on growth performance, feed utilisation, intestinal histology and gut microbiota of gilthead sea bream (Sparus aurata). Aquaculture 300(1–4):182–188

    Article  CAS  Google Scholar 

  26. Wang J, Ren T, Han Y, Zhao Y, Liao M, Wang F, Jiang Z (2015) Effects of dietary vitamin C supplementation on lead-treated sea cucumbers, Apostichopus japonicus. Ecotoxicol Environ Saf 118:21–26

    Article  CAS  PubMed  Google Scholar 

  27. Elia AC, Prearo M, Pacini N, Dörr AJM, Abete MC (2011) Effects of selenium diets on growth, accumulation and antioxidant response in juvenile carp. Ecotoxicol Environ Saf 74(2):166–173

    Article  CAS  PubMed  Google Scholar 

  28. Li C, Ren Y, Jiang S, Zhou S, Zhao J, Wang R, Li Y (2018) Effects of dietary supplementation of four strains of lactic acid bacteria on growth, immune-related response and genes expression of the juvenile sea cucumber Apostichopus japonicus Selenka. Fish Shellfish Immunol 74:69–75

    Article  CAS  PubMed  Google Scholar 

  29. Yang A, Zhou Z, Dong Y, Jiang B, Wang X, Chen Z, Guan X, Wang B, Sun D (2010) Expression of immune-related genes in embryos and larvae of sea cucumber Apostichopus japonicus. Fish Shellfish Immunol 29(5):839–845

    Article  CAS  PubMed  Google Scholar 

  30. Zhou X, Chang Y, Zhan Y, Wang X, Lin K (2018) Integrative mRNA-miRNA interaction analysis associate with immune response of sea cucumber Apostichopus japonicus based on transcriptome database. Fish Shellfish Immunol 72:69–76

    Article  CAS  PubMed  Google Scholar 

  31. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chow C, Hong C (2002) Dietary vitamin E and selenium and toxicity of nitrite and nitrate. Toxicology 180(2):195–207

    Article  CAS  PubMed  Google Scholar 

  33. Naderi M, Keyvanshokooh S, Salati AP, Ghaedi A (2017) Combined or individual effects of dietary vitamin E and selenium nanoparticles on humoral immune status and serum parameters of rainbow trout (Oncorhynchus mykiss) under high stocking density. Aquaculture 474:40–47

    Article  CAS  Google Scholar 

  34. Wojcicki J, Różewicka L, Barcew-Wiszniewska B, Samochowiec L, Juiwiak S, Kadłubowska D, Tustanowski S, Juzyszyn Z (1991) Effect of selenium and vitamin E on the development of experimental atherosclerosis in rabbits. Atherosclerosis 87(1):9–16

    Article  CAS  PubMed  Google Scholar 

  35. Monsen ER (2000) Dietary reference intakes for the antioxidant nutrients: vitamin C, vitamin E, selenium, and carotenoids. J Acad Nutr Diet 100(6):637

    CAS  Google Scholar 

  36. Lee S, Nambi RW, Won S, Katya K, Bai SC (2016) Dietary selenium requirement and toxicity levels in juvenile Nile tilapia, Oreochromis niloticus. Aquaculture 464:153–158

    Article  CAS  Google Scholar 

  37. Wang K (2009) Effects of vitamin C on growth and nonspecific immunity of Apostichopus japonicus. Dalian University of Technology, Dalian (in chinese)

    Google Scholar 

  38. Ren TJ, Liao ML, Han YZ, Li YL, Jiang ZQ, Wang FQ (2016) Effectiveness of l-ascorbyl-2-polyphosphate as an ascorbic acid source for sea cucumber, Apostichopus japonicus. Aquac Res 47(8):2594–2606

    Article  CAS  Google Scholar 

  39. Chunyun Z, Yingeng W, Xiaojun R, Huiling S, Shugang D (2004) Natural resources, culture and problems of sea cucumber worldwide. Mar Fish Res 25(3):89–97

    Google Scholar 

  40. Schrauzer GN (2000) Selenomethionine: a review of its nutritional significance, metabolism and toxicity. J Nutr 130(7):1653–1656

    Article  CAS  PubMed  Google Scholar 

  41. Lushchak VI (2011) Environmentally induced oxidative stress in aquatic animals. Aquat Toxicol 101(1):13–30

    Article  CAS  PubMed  Google Scholar 

  42. Steenvoorden DPT, Henegouwen GMJV (1997) The use of endogenous antioxidants to improve photoprotection. J Photochem Photobiol B Biol 41(1–2):1–10

    Article  CAS  Google Scholar 

  43. Liu KF, Yeh MS, Kou GH, Cheng W, Lo CF (2010) Identification and cloning of a selenium-dependent glutathione peroxidase from tiger shrimp, Penaeus monodon, and its transcription following pathogen infection and related to the molt stages. Dev Comp Immunol 34(9):935–944

    Article  CAS  PubMed  Google Scholar 

  44. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG, Hoekstra W (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590. https://doi.org/10.1126/science.179.4073.588

    Article  CAS  PubMed  Google Scholar 

  45. Zhang Q, Zhang G, Yin P, Lv Y, Yuan S, Chen J, Wei B, Wang C (2015) Toxicological effects of soil contaminated with spirotetramat to the earthworm Eisenia fetida. Chemosphere 139(NOV.):138–145

    CAS  PubMed  Google Scholar 

  46. Abdel-Tawwab M, Mousa MAA, Abbass FE (2007) Growth performance and physiological response of African catfish, Clarias gariepinus (B.) fed organic selenium prior to the exposure to environmental copper toxicity. Aquaculture 272(1–4):335–345

    Article  CAS  Google Scholar 

  47. Alberto Burgos-Aceves M, Cohen A, Smith Y, Faggio C (2018) MicroRNAs and their role on fish oxidative stress during xenobiotic environmental exposures. Ecotoxicol Environ Saf 148(FEB.):995–1000

    Article  CAS  Google Scholar 

  48. Sun S, Ge X, Zhu J, Xuan F, Jiang X (2014) Identification and mRNA expression of antioxidant enzyme genes associated with the oxidative stress response in the Wuchang bream (Megalobrama amblycephala Yih) in response to acute nitrite exposure. Comp Biochem Physiol Part C: Toxicol Pharmacol 159:69–77

    CAS  Google Scholar 

  49. Li C, Zhou S, Ren Y, Jiang S, Xia B, Dong X (2016) Toxic effects in juvenile sea cucumber Apostichopus japonicas (Selenka) exposure to benzo[ a ]pyrene. Fish Shellfish Immunol 59:375–381

    Article  CAS  PubMed  Google Scholar 

  50. Canicattí C (1990) Lysosomal enzyme pattern in Holothuria polii coelomocytes. J Invertebr Pathol 56(1):70–74

    Article  Google Scholar 

  51. Roberts ML, Davies SJ, Pulsford AL (1995) The influence of ascorbic acid (vitamin C) on non-specific immunity in the turbot (Scophthalmus maximus L.). Fish Shellfish Immunol 5(1):27–38

    Article  Google Scholar 

  52. Oliva-Teles A (2012) Nutrition and health of aquaculture fish. J Fish Dis 35(2):83–108

    Article  CAS  PubMed  Google Scholar 

  53. Lim C, Yildirim-Aksoy M, Welker T, Klesius PH, Li MH (2010) Growth Performance, Immune Response, and Resistance to Streptococcus iniae of Nile Tilapia, Oreochromis niloticus , Fed Diets Containing Various Levels of Vitamins C and E. J World Aquacult Soc 41(1):35–48

    Article  Google Scholar 

  54. Gullo CA, Teoh G (2004) Heat shock proteins: to present or not, that is the question. Immunol Lett 94(1–2):1–10

    Article  CAS  PubMed  Google Scholar 

  55. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16(8):857–872

    Article  CAS  PubMed  Google Scholar 

  56. Cheng CH, Liang HY, Guo ZX, Wang AL, Ye CX (2017) Effect of dietary vitamin C on growth performance, antioxidant status and innate immunity of juvenile Pufferfish (Takifugu obscurus). Israel J Aquacult-Bamidgeh 69:1434–1446

    Google Scholar 

  57. Wu C, Wang J, Xu W, Zhang W, Mai K (2014) Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino. Fish Shellfish Immunol 41(2):120–125

    Article  CAS  PubMed  Google Scholar 

  58. Cara J, Aluru N, Moyano F, Vijayan M (2005) Food-deprivation induces HSP70 and HSP90 protein expression in larval gilthead sea bream and rainbow trout. Comp Biochem Physiol B: Biochem Mol Biol 142(4):426–431

    Article  CAS  Google Scholar 

  59. Simide R, Richard S, Prévot-D’Alvise N, Miard T, Gaillard S (2016) Assessment of the accuracy of physiological blood indicators for the evaluation of stress, health status and welfare in Siberian sturgeon (Acipenser baerii) subject to chronic heat stress and dietary supplementation. Int Aquat Res 8(2):121–135

    Article  Google Scholar 

  60. Jia R, Du J, Cao L, Li Y, Johnson O, Gu Z, Jeney G, Xu P, Yin G (2019) Antioxidative, inflammatory and immune responses in hydrogen peroxide-induced liver injury of tilapia (GIFT, Oreochromis niloticus). Fish Shellfish Immunol 84:894–905

    Article  CAS  PubMed  Google Scholar 

  61. Monteiro DA, Rantin FT, Kalinin AL (2010) Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicology 19(1):105–123

    Article  CAS  PubMed  Google Scholar 

  62. Choi YJ, Kim NN, Shin HS, Park MS, Kil G-S, Choi CY (2013) Effects of waterborne selenium exposure on the antioxidant and immunological activity in the goldfish, Carassius auratus. Mol Cell Toxicol 9(4):365–373

    Article  CAS  Google Scholar 

  63. Dawood MAO, Koshio S (2018) Vitamin C supplementation to optimize growth, health and stress resistance in aquatic animals. Rev Aquac 10(2):334–350

    Article  Google Scholar 

  64. Hao X, Ling Q, Hong F (2014) Effects of dietary selenium on the pathological changes and oxidative stress in loach (Paramisgurnus dabryanus). Fish Physiol Biochem 40(5):1313–1323

    Article  CAS  PubMed  Google Scholar 

  65. Lin YH, Shiau SY (2007) The effects of dietary selenium on the oxidative stress of grouper, Epinephelus malabaricus, fed high copper. Aquaculture 267(1–4):38–43

    Article  CAS  Google Scholar 

  66. Wu S, Wang G, Angert ER, Wang W, Li W, Zou H (2012) Composition, diversity, and origin of the bacterial community in grass carp intestine. PLoS One 7(2):e30440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Han S, Liu Y, Zhou Z, He S, Cao Y, Shi P, Yao B, RingÖ E (2010) Analysis of bacterial diversity in the intestine of grass carp (Ctenopharyngodon idellus) based on 16S rDNA gene sequences. Aquac Res 42(1):47–56

    Article  CAS  Google Scholar 

  68. Yu LH, Teh CSJ, Yap KP, Ung EH, Thong KL (2020) Comparative genomic provides insight into the virulence and genetic diversity of Vibrio parahaemolyticus associated with shrimp acute hepatopancreatic necrosis disease. Infection, genetics and evolution:104347

  69. Makaritsis KP, Neocleous C, Gatselis N, Petinaki E, Dalekos GN (2009) An immunocompetent patient presenting with severe septic arthritis due to Ralstonia pickettii identified by molecular-based assays: a case report. Cases J 2(1):1–3

    Article  Google Scholar 

  70. Yoon J, Matsuo Y, Katsuta A, Jang J-H, Matsuda S, Adachi K, Kasai H, Yokota A (2008) Haloferula rosea gen. Nov., sp. nov., Haloferula harenae sp. nov., Haloferula phyci sp. nov., Haloferula helveola sp. nov. and Haloferula sargassicola sp. nov., five marine representatives of the family Verrucomicrobiaceae within the phylum ‘Verrucomicrobia’. Int J Syst Evol Microbiol 58(11):2491–2500

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Authors express their gratitude to Prof. Dr. Tongjun Ren, Dr. Yuzhe Han, and Mr. Lianshun Wang who supported the management and plan of this experiment. We thank Zhuoan Bai, Jing Zhou, Zhengzheng Bi, and Anran Dong for their contribution to the laboratory works. Finally, thanks to Md Hasim Rabbi and Yanan Hu for their help on writing and editing English language text.

Funding

This work is supported by the grants from National Oceanic Administration (No. 201405003) and Liaoning marine industrial technology research institute (2018-CY-30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tongjun Ren.

Ethics declarations

Conflict of Interest

We declare no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, F., Rabbi, M.H., Hu, Y. et al. Synergistic Effects of Dietary Selenomethionine and Vitamin C on the Immunity, Antioxidant Status, and Intestinal Microbiota in Sea Cucumber (Apostichopus japonicus). Biol Trace Elem Res 199, 3905–3917 (2021). https://doi.org/10.1007/s12011-020-02483-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02483-3

Keywords

Navigation