Skip to main content
Log in

Analysis of Cadmium, Epigallocatechin Gallate, and Vitamin C Co-exposure on PC12 Cellular Mechanisms

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Exposure to cadmium (Cd) is a risk factor to health impairments, wherein its cytotoxicity is attributed to induction of oxidative stress. Usage of anti-oxidants, however, can help lessen the damaging effects of Cd. The effect of Cd interaction with low concentration of dietary anti-oxidants, l-ascorbic acid and (−)-epigallocatechin gallate (EGCG), to PC12 cellular mechanisms was examined. The expected toxicity of Cd was observed on PC12 cells but addition of l-ascorbic acid ameliorated this effect. On the other hand, addition of EGCG was able to increase the cytotoxicity of Cd and to decrease the protective effect of l-ascorbic acid against Cd. Increase in LDH activity and decrease in free sulfhydryl levels indicated cell membrane damage and oxidative stress, respectively, in Cd- and EGCG-Cd-treated cells. Downregulation of pro-apoptotic proteins (pro-caspase-9, p53, and ERK1) was observed in cells treated with Cd alone and EGCG-Cd, while upregulation of autophagy-linked proteins (p62 and pBeclin1) was found on l-ascorbic acid–Cd combination treatments. These findings indicate that Cd causes cells to undergo an autophagy-enhanced cell death; low-concentration EGCG and l-ascorbic acid promotes cell survival individually; however, interaction of EGCG with Cd showed enhancement of Cd toxicity and antagonism of l-ascorbic acid efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

Bax:

BCl2-associated X apoptosis regulator

EGCG:

(−)-Epigallocatechin-3-gallate

ERK1:

Extracellular signal–regulated kinase-1

GSH:

Glutathione

LDH:

Lactate dehydrogenase

mTOR:

Mammalian target of rapamycin

PBS:

Phosphate buffer saline

ROS:

Reactive oxygen species

SEM:

Standard error of mean

SH:

Thiol group

References

  1. Zhai Q, Narbad A, Chen W (2015) Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients 7:552–571. https://doi.org/10.3390/nu7010552

    Article  CAS  PubMed  Google Scholar 

  2. Thevenod F, Lee WK (2015) Live and let die: roles of autophagy in cadmium nephrotoxicity. Toxics 3:130–151. https://doi.org/10.3390/toxics3020130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Rani A, Kumar A, Lal A, Pant M (2014) Cellular mechanisms of cadmium- induced toxicity: a review. Int J Environ Health Res 24:378–399. https://doi.org/10.1080/09603123.2013.835032

    Article  CAS  PubMed  Google Scholar 

  4. Yuan Y, Wang Y, Hu FF, Jiang CY, Zhang YJ, Yang JL, Zhao SW, Gu JH, Liu XZ, Bian JC, Liu ZP (2016) Cadmium activates reactive oxygen species-dependent AKT/mTOR and mitochondrial apoptotic pathways in neuronal cells. Biomed Environ Sci 29:117–126. https://doi.org/10.3967/bes2016.013

    Article  CAS  PubMed  Google Scholar 

  5. Rahman M, Hossain K, Banik S, Sikder MT, Akter M, Bondad S, Rahaman S, Hosokawa T, Saito T, Kurasaki M (2019) Selenium and zinc protections against metal-(loids)-induced toxicity and disease manifestations: a review. Ecotoxicol Environ Saf 168:146–163. https://doi.org/10.1016/j.ecoenv.2018.10.054

    Article  CAS  PubMed  Google Scholar 

  6. Institute of Medicine (2000) Dietary reference intakes for vitamin C, vitamin E, selenium and carotenoids. The National Academy, Washington, D.C., pp 95–167

    Google Scholar 

  7. Chung JH, Kim S, Lee SJ, Chung JO, Oh YJ, Shim SM (2013) Green tea formulations with vitamin C and xylitol on enhanced intestinal transport of green tea catechin. J Food Sci 78:C685–C690. https://doi.org/10.1111/1750-3841.12112

    Article  CAS  PubMed  Google Scholar 

  8. An Z, Qi Y, Huang D, Gu X, Tian Y, Li P, Li H, Zhang Y (2014) EGCG inhibits Cd2+-induced apoptosis through scavenging ROS rather than chelating Cd2+ in HL-7702 cells. Toxicol Mech Methods 24:259–267. https://doi.org/10.3109/15376516.2013879975

    Article  CAS  PubMed  Google Scholar 

  9. Abib RT, Peres KC, Barbosa AM, Peres TV, Bernardes A, Zimmermann LM, Quincozes-Santos A, Fiedler HD, Leal RB, Farina M, Gottfried C (2011) Epigallocatechin-3-gallate protects rat brain mitochondria against cadmium-induced damage. Food Chem Toxicol 49:2618–2623. https://doi.org/10.1016/j.fct.2011.07.006

    Article  CAS  PubMed  Google Scholar 

  10. Grosicki A (2014) Influence of vitamin C on cadmium absorption and distribution in rats. J Trace Elem Med Biol 18:183–187. https://doi.org/10.1016/j.jtemb.2004.06.003

    Article  CAS  Google Scholar 

  11. El-Sayed YS, El-Gazzar AM, El-Nahas AF, Ashry KM (2016) Vitamin C modulates cadmium-induced hepatic antioxidants’ gene transcripts and toxicopathic changes in Nile tilapia Oreochromis niloticus. Environ Sci Pollut Res 23:1664–1670. https://doi.org/10.1007/s11356-015-5412-8

    Article  CAS  Google Scholar 

  12. Mereles D, Hunstein W (2011) Epigallocatechin-3-gallate (EGCG) for clinical trials: more pitfalls than promises? Int J Mol Sci 12:5592–5603. https://doi.org/10.3390/ijms12095592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Yashin A, Nemzer B, Yashin Y (2012) Bioavailability of tea components. J Food Res 1:281–290. https://doi.org/10.5539/jfr.v1n2p281

    Article  CAS  Google Scholar 

  14. Cyriac JM, James E (2014) Switch over from intravenous to oral therapy: a concise overview. J Pharmacol Pharmacother 5:83–87. https://doi.org/10.4103/0976-500X.130042

    Article  PubMed  PubMed Central  Google Scholar 

  15. Rein MJ, Renouf M, Cruz-Hernandez C, Actis-Goretta L, Thakkar SK, da Silva PM (2012) Bioavailability of bioactive food compounds: a challenging journey to bioefficacy. Br J Clin Pharmacol 75:588–602. https://doi.org/10.1111/j.1365-2125.2012.04425.x

    Article  CAS  Google Scholar 

  16. Westerink RHS, Ewing AG (2008) The PC12 cell as model for neurosecretion. Acta Physiol (Oxford) 192:273–285. https://doi.org/10.1111/j.1748-1716.2007.01805.x

    Article  CAS  Google Scholar 

  17. Zong L, Xing J, Liu S, Liu Z, Song F (2018) Cell metabolomics reveals the neurotoxicity mechanism of cadmium in PC12 cells. Ecotoxicol Environ Saf 147:26–33. https://doi.org/10.1016/j.ecoenv.2017.08.028

    Article  CAS  PubMed  Google Scholar 

  18. Rahman M, Ukiana J, Uson-Lopez R, Sikder MT, Saito T, Kurasaki M (2017) Cytotoxic effects of cadmium and zinc co-exposure in PC12 cells and the underlying mechanisms. Chem Biol Interact 269:41–49. https://doi.org/10.1016/j.cbi.2017.04.003

    Article  CAS  PubMed  Google Scholar 

  19. Hossain KFB, Rahman MM, Sikder MT, Saito T, Hosokawa T, Kurasaki M (2018) Inhibitory effects of selenium on cadmium-induced cytotoxicity in PC12 cells via regulating oxidative stress and apoptosis. Food Chem Toxicol 114:180–189. https://doi.org/10.1016/j.fct.2018.02.034

    Article  CAS  Google Scholar 

  20. Kihara Y, Yustiawati, Tanaka M, Gumiri S, Adrianor HT, Tanaka S, Saito T, Kurasaki M (2012) Mechanism of the toxicity induced by natural humic acid on human vascular endothelial cells. Environ Toxicol 29:916–925. https://doi.org/10.1002/tox.21819

    Article  CAS  PubMed  Google Scholar 

  21. Alfonso P, Athanase V, Aldo P, Vincenzo DT, Alessandro FC (2003) The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 66:1499–1503. https://doi.org/10.1016/S0006-2952(03)00504-5

    Article  CAS  Google Scholar 

  22. Cregan SP, Fortin A, MacLaurin JG, Callaghan SM, Cecconi F, Yu SW, Dawson TM, Dawson VL, Park DS, Kroemer G, Slack RS (2002) Apoptosis-inducing factor is involved in the regulation of caspase- independent neuronal cell death. J Cell Biol 158:507–517. https://doi.org/10.1083/jcb.200202130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014. https://doi.org/10.1126/science.1092734

    Article  CAS  PubMed  Google Scholar 

  24. Chen L, Liu L, Luo Y, Huang S (2008) MAPK and mTOR pathways are involved in cadmium-induced neuronal apoptosis. J Neurochem 105:251–261. https://doi.org/10.1111/j.1471-4159.2007.05133.x

    Article  CAS  PubMed  Google Scholar 

  25. Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK- induced cell death – apoptosis, autophagy and senescence. FEBS J 277:2–21. https://doi.org/10.1111/j.1742-4658.2009.07366.x

    Article  CAS  PubMed  Google Scholar 

  26. Chuang SM, Wang IC, Yang JI (2000) Roles of JNK, p38 and ERK mitogen-activated protein kinases in the growth inhibition and apoptosis induced by cadmium. Carcinogenesis 21:1423–1432. https://doi.org/10.1093/carcin/21.7.1423

    Article  CAS  PubMed  Google Scholar 

  27. Martin P, Poggi M, Chambard J, Boulukos K, Pognonec P (2006) Low dose cadmium poisoning results in sustained ERK phosphorylation and caspase activation. Biochem Biophys Res Commun 350:803–807. https://doi.org/10.1016/j.bbrc.2006.09.126

    Article  CAS  PubMed  Google Scholar 

  28. Polak P, Hall MN (2009) mTOR and the control of whole body metabolism. Curr Opin Cell Biol 21:209–218. https://doi.org/10.1016/j.ceb.2009.01.024

    Article  CAS  PubMed  Google Scholar 

  29. Chen L, Xu B, Liu L, Luo Y, Zhou H, Chen W, Shen T, Han X, Kontos CD, Huang S (2011) Cadmium induction of reactive oxygen species activates the mTOR pathway, leading to neuronal cell death. Free Radic Biol Med 50:624–632. https://doi.org/10.1016/j.freeradbiomed.2010.12.032

    Article  CAS  PubMed  Google Scholar 

  30. Gibson SB (2013) Investigating the role of reactive oxygen species in regulating autophagy. Methods Enzymol 528:217–235. https://doi.org/10.1016/B978-0-12-405881-1.00013-6

    Article  CAS  PubMed  Google Scholar 

  31. Fan YJ, Zong WX (2013) The cellular decision between apoptosis and autophagy. Chin J Cancer 32:121–129

    Article  CAS  Google Scholar 

  32. Hippert MM, O’Toole PS, Thorburn A (2006) Autophagy in cancer: good, bad, or both? Cancer Res 66:9349–9351. https://doi.org/10.1158/0008-5472.CAN-06-1597

    Article  CAS  PubMed  Google Scholar 

  33. Liu Y, Templeton DM (2008) Initiation of caspase-independent death in mouse mesangial cells by Cd2+: involvement of p38 kinase and CaMK-II. J Cell Physiol 217:308–318. https://doi.org/10.1002/jcp.21499

    Article  CAS  Google Scholar 

  34. Lawal AO, Ellis EM (2012) Phospholipase C mediates cadmium-dependent apoptosis in HEK 293 cells. Basic Clin Pharmacol Toxicol 110:510–517. https://doi.org/10.1111/j.1742-7843.2011.00843.x

    Article  CAS  PubMed  Google Scholar 

  35. Lee WK, Torchalski B, Thevenod F (2007) Cadmium-induced ceramide formation triggers calpain-dependent apoptosis in cultured kidney proximal tubule cells. Am J Phys Cell Phys 293:C839–C847. https://doi.org/10.1152/ajpcell.00197.2007

    Article  CAS  Google Scholar 

  36. Wang SH, Shih YL, Lee CC, Chen WL, Lin CJ, Lin YS, Wu KH, Shih CM (2009) The role of endoplasmic reticulum in cadmium-induced mesangial cell apoptosis. Chem Biol Interact 181:45–51. https://doi.org/10.1016/j.cbi.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  37. Messner B, Türkcan A, Ploner C, Laufer G, Bernhard D (2015) Cadmium overkill: autophagy, apoptosis and necrosis signaling in endothelial cells exposed to cadmium. Cell Mol Life Sci 73:1699–1713. https://doi.org/10.1007/s00018-015-2094-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Dong Z, Wang L, Xu J, Li Y, Zhang Y, Zhang S, Miao J (2009) Promotion of autophagy and inhibition of apoptosis by low concentrations of cadmium in vascular endothelial cells. Toxicol In Vitro 23:105–110. https://doi.org/10.1016/j.tiv.2008.11.003

    Article  CAS  PubMed  Google Scholar 

  39. Wang QW, Wang Y, Wang T, Zhang KB, Yuan Y, Bian JC, Liu XZ, Gu JH, Zhu JQ, Liu ZP (2015) Cadmium-induced autophagy is mediated by oxidative signaling in PC-12 cells and is associated with cytoprotection. Mol Med Rep 12:4448–4454. https://doi.org/10.3892/mmr.2015.3907

    Article  CAS  PubMed  Google Scholar 

  40. Liu W, Dai N, Wang Y, Xu C, Zhao H, Xia P, Gu J, Liu X, Bian J, Yuan Y, Zhu J, Liu Z (2016) Role of autophagy in cadmium-induced apoptosis of primary rat osteoblasts. Sci Rep 6:20404. https://doi.org/10.1038/srep20404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Fujishiro H, Liu Y, Ahmadi B, Templeton DM (2018) Protective effect of cadmium-induced autophagy in rat renal mesangial cells. Arch Toxicol 92:619–631. https://doi.org/10.1007/s00204-017-2103-x

    Article  CAS  PubMed  Google Scholar 

  42. Miller TM, Moulder KL, Knudson CM, Creedon DJ, Deshmukh M, Korsmeyer SJ, Johnson EJ Jr (1997) Bax deletion further orders the cell death pathway in cerebellar granule cells and suggest a caspase- independent pathway to cell death. J Cell Biol 139:205–217. https://doi.org/10.1083/jcb.139.1.205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Stefanis L (2005) Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist 11:50–62. https://doi.org/10.1177/1073858404271087

    Article  CAS  PubMed  Google Scholar 

  44. Sang S, Lambert JD, Ho CT, Yang CS (2011) The chemistry and biotransformation of tea constituents. Pharmacol Res 64:87–99. https://doi.org/10.1016/j.phrs.2011.02.007

    Article  CAS  PubMed  Google Scholar 

  45. Akagawa M, Shigemitsu T, Suyama K (2003) Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi- physiological conditions. J Soc Biosci Biotech Agrochem 67:2632–2640. https://doi.org/10.1271/bbb.67.2632

    Article  CAS  Google Scholar 

  46. Furukawa A, Oikawa S, Murata M, Hiraku Y, Kawanishi S (2003) (−)-Epigallocatechin gallate causes oxidative damage to isolated and cellular DNA. Biochem Pharmacol 66:1769–1778. https://doi.org/10.1016/S0006-2952(03)00541-0

    Article  CAS  PubMed  Google Scholar 

  47. Sang S, Lee MJ, Hou Z, Ho CT, Yang CS (2005) Stability of tea polyphenol (−)-epigallocatechin-3-gallate and formation of dimers and epimers under common experimental conditions. J Agric Food Chem 532:9478–9484. https://doi.org/10.1021/jf0519055

    Article  CAS  Google Scholar 

  48. Wei Y, Chen P, Ling T, Wang Y, Dong R, Zhang C, Zhang L, Han M, Wang D, Wan X, Zhang L (2016) Certain (−)-epigallocatechin-3-gallate (EGCG) auto-oxidation products (EAOPs) retain cytotoxic activities of EGCG. Food Chem 204:218–226. https://doi.org/10.1016/j.foodchem.2016.02.134

    Article  CAS  PubMed  Google Scholar 

  49. Hong J, Lu H, Meng X, Ryu JH, Hara Y, Yang CS (2002) Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (−)- epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res 62:7241–7246 cd

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Kurasaki.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bondad, S.E.C., Kurasaki, M. Analysis of Cadmium, Epigallocatechin Gallate, and Vitamin C Co-exposure on PC12 Cellular Mechanisms. Biol Trace Elem Res 198, 627–635 (2020). https://doi.org/10.1007/s12011-020-02097-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-020-02097-9

Keywords

Navigation