Skip to main content
Log in

Fas- and Mitochondria-Mediated Signaling Pathway Involved in Osteoblast Apoptosis Induced by AlCl3

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Aluminum (Al) is known to induce apoptosis of osteoblasts (OBs). However, the mechanism is not yet established. To investigate the apoptotic mechanism of OBs induced by aluminum trichloride (AlCl3), the primary OBs from the craniums of fetal Wistar rats were exposed to 0 mg/mL (control group, CG), 0.06 mg/mL (low-dose group, LG), 0.12 mg/mL (mid-dose group, MG), and 0.24 mg/mL (high-dose group, HG) AlCl3 for 24 h, respectively. We observed that AlCl3 induced OB apoptosis with the appearance of apoptotic morphology and increase of apoptosis rate. Additionally, AlCl3 treatment activated mitochondrial-mediated signaling pathway, accompanied by mitochondrial membrane potential (ΔΨm) depolarization, release of cytochrome c from the mitochondria to the cytoplasm, as well as survival signal-related factor caspase-9 and caspase-3 activation. AlCl3 exposure also activated Fas/Fas ligand signaling pathway, presented as Fas, Fas ligand, and Fas-associated death domain expression enhancement and caspase-8 activation, as well as the hydrolysis of Bid to truncated Bid, suggesting that the Fas-mediated signaling pathway might aggravate mitochondria-mediated OB apoptosis through hydrolyzing Bid. Furthermore, AlCl3 exposure inhibited Bcl-2 protein expression and increased the expressions of Bax, Bak, and Bim in varying degrees. These results indicated that AlCl3 exposure induced OB apoptosis through activating Fas- and mitochondria-mediated signaling pathway and disrupted B-cell lymphoma-2 family proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Al:

Aluminum

AlCl3 :

Aluminum trichloride

ANOVA:

One-way analysis of variance

AO/EB:

Acridine orange/ethidium bromide

Bcl-2:

B-cell lymphoma-2

Cyt-C:

Cytochrome c

DMEM:

Dulbecco’s minimum essential medium

FADD:

Fas-associated death domain

FasL:

Fas ligand

FBS:

Fetal bovine serum

JC-1:

5,5′,6,6′-Tetrachloro-1.1′,3,3′-tetraethylbenzimidazolylcarbocyanine iodide

MPTP:

Mitochondrial permeability transition pore

MTP:

Mitochondrial transmembrane potential

OBs:

Osteoblasts

qRT-PCR:

Quantitative real-time reverse transcription-polymerase chain reaction

SDS-PAGE:

SDS-polyacrylamide gel electrophoresis

References

  1. Krewski D, Yokel RA, Nieboer E, Borchelt D, Cohen J, Harry J, Kacew S, Lindsay J, Mahfouz AM, Rondeau V (2007) Human health risk assessment for aluminium aluminium oxide and aluminium hydroxide. J Toxic Environ Health B Crit Rev 10(Suppl 1):1–269

    CAS  Google Scholar 

  2. Crisponi G, Fanni D, Gerosa C, Nemolato S, Nurchi VM, Crespo-Alonso M, Lachowicz JI, Faa G (2013) The meaning of aluminium exposure on human health and aluminium-related diseases. Biomol Concepts 4:77–87

    Article  PubMed  CAS  Google Scholar 

  3. Yokel RA, Florence RL (2008) Aluminum bioavailability from tea infusion. Food Chem Toxicol 46:3659–3663

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Fekete V, Vandevijvere S, Bolle F, Van Loco J (2013) Estimation of dietary aluminum exposure of the Belgian adult population: evaluation of contribution of food and kitchenware. Food Chem Toxicol 55:602–608

    Article  PubMed  CAS  Google Scholar 

  5. Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM, Arnold IM, Momoli F, Krewski D (2014) Systematic review of potential health risks posed by pharmaceutical occupational and consumer exposures to metallic and nanoscale aluminum aluminum oxides aluminum hydroxide and its soluble salts. Crit Rev Toxicol 44(Suppl 4):1–80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Ali A, Strezov V, Davies P, Wright I (2017) Environmental impact of coal mining and coal seam gas production on surface water quality in the Sydney basin, Australia. Environ Monit Assess 189:408

    Article  PubMed  CAS  Google Scholar 

  7. Machado CS, Fregonesi BM, Alves RIS, Tonani KAA, Sierra J, Martinis BS, Celere BS, Mari M, Schuhmacher M, Nadal M, Domingo JL, Segura-Munoz S (2017) Health risks of environmental exposure to metals and herbicides in the Pardo River, Brazil. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-017-9461-z

  8. Tidblad J, Kreislova K, Faller M, de la Fuente D, Yates T, Verney-Carron A, Grontoft T, Gordon A, Hans U (2017) ICP materials trends in corrosion, soiling and air pollution (1987–2014). Materials. https://doi.org/10.3390/ma10080969

  9. Jiang Q, Wang J, Li M, Liang X, Dai G, Hu Z, Wen J, Huang Q, Zhang Y (2013) Dietary exposure to aluminium of urban residents from cities in South China. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 30:698–704

    Article  PubMed  CAS  Google Scholar 

  10. Sato K, Suzuki I, Kubota H, Furusho N, Inoue T, Yasukouchi Y, Akiyama H (2014) Estimation of daily aluminum intake in Japan based on food consumption inspection results: impact of food additives. Food Sci Nutr 2:389–397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Priest ND (2004) The biological behaviour and bioavailability of aluminium in man with special reference to studies employing aluminium-26 as a tracer: review and study update. J Environ Monit 6:375–403

    Article  PubMed  CAS  Google Scholar 

  12. Krewski D (2014) Systematic review of potential health risks posed by pharmaceutical occupational and consumer exposures to metallic and nanoscale aluminum aluminum oxides aluminum hydroxide and its soluble salts. Crit Rev Toxicol 44(Suppl 4):1–80

    PubMed  PubMed Central  Google Scholar 

  13. Malluche HH (2002) Aluminium and bone disease in chronic renal failure. Nephrol Dial Transplant 17(Suppl 2):21–24

    Article  PubMed  CAS  Google Scholar 

  14. Li X, Hu C, Zhu Y, Sun H, Li Y, Zhang Z (2011) Effects of aluminum exposure on bone mineral density mineral and trace elements in rats. Biol Trace Elem Res 143:378–385

    Article  PubMed  CAS  Google Scholar 

  15. Cournot-Witmer G, Zingraff J, Plachot JJ, Escaig F, Lefevre R, Boumati P, Bourdeau A, Garabedian M, Galle P, Bourdon R, Drueke T, Balsan S (1981) Aluminum localization in bone from hemodialyzed patients: relationship to matrix mineralization. Kidney Int 20:375–378

    Article  PubMed  CAS  Google Scholar 

  16. Jablonski G, Klem KH, Danielsen CC, Mosekilde L, Gordeladze JO (1996) Aluminium-induced bone disease in uremic rats: effect of deferoxamine. Biosci Rep 16:49–63

    Article  PubMed  CAS  Google Scholar 

  17. Sun X, Cao Z, Zhang Q, Liu S, Xu F, Che J, Zhu Y, Li Y, Pan C, Liang W (2015) Aluminum trichloride impairs bone and downregulates Wnt/beta-catenin signaling pathway in young growing rats. Food Chem Toxicol 86:154–162

    Article  PubMed  CAS  Google Scholar 

  18. Zhu Y, Hu C, Zheng P, Miao L, Yan X, Li H, Wang Z, Gao B, Li Y (2016a) Ginsenoside Rb1 alleviates aluminum chloride-induced rat osteoblasts dysfunction. Toxicology 368–369:183–189

    Article  PubMed  CAS  Google Scholar 

  19. Zhu Y, Xu F, Yan X, Miao L, Li H, Hu C, Wang Z, Lian S, Feng Z, Li Y (2016b) The suppressive effects of aluminum chloride on the osteoblasts function. Environ Toxicol Pharmacol 48:125–129

    Article  PubMed  CAS  Google Scholar 

  20. Sun X, Liu J, Zhuang C, Yang X, Han Y, Shao B, Song M, Li Y, Zhu Y (2016b) Aluminum trichloride induces bone impairment through TGF-beta1/Smad signaling pathway. Toxicology 371:49–57

    Article  PubMed  CAS  Google Scholar 

  21. Harada S, Rodan GA (2003) Control of osteoblast function and regulation of bone mass. Nature 423:349–355

    Article  PubMed  CAS  Google Scholar 

  22. Yang X, Huo H, Xiu C, Song M, Han Y, Li Y, Zhu Y (2016) Inhibition of osteoblast differentiation by aluminum trichloride exposure is associated with inhibition of BMP-2/Smad pathway component expression. Food Chem Toxicol 97:120–126

    Article  PubMed  CAS  Google Scholar 

  23. Sun X, Cao Z, Zhang Q, Li M, Han L, Li Y (2016a) Aluminum trichloride inhibits osteoblast mineralization via TGF-beta1/Smad signaling pathway. Chem Biol Interact 244:9–15

    Article  PubMed  CAS  Google Scholar 

  24. Hellstrom HO, Mjoberg B, Mallmin H, Michaelsson K (2005) The aluminum content of bone increases with age but is not higher in hip fracture cases with and without dementia compared to controls. Osteoporos Int 16:1982–1988

    Article  PubMed  CAS  Google Scholar 

  25. Aaseth J, Boivin G, Andersen O (2012) Osteoporosis and trace elements—an overview. J Trace Elem Med Biol 26:149–152

    Article  PubMed  CAS  Google Scholar 

  26. Marie PJ, Kassem M (2011) Osteoblasts in osteoporosis: past emerging and future anabolic targets. Eur J Endocrinol 165:1–10

    Article  PubMed  CAS  Google Scholar 

  27. Jilka RL, O’Brien CA, Roberson PK, Bonewald LF, Weinstein RS, Manolagas SC (2014) Dysapoptosis of osteoblasts and osteocytes increases cancellous bone formation but exaggerates cortical porosity with age. J Bone Miner Res 29:103–117

    Article  PubMed  CAS  Google Scholar 

  28. Armour KJ, Armour KE, van’t Hof RJ, Reid DM, Wei XQ, Liew FY, Ralston SH (2001) Activation of the inducible nitric oxide synthase path. Arthritis Rheum 44(12):2790–2796

    Article  PubMed  CAS  Google Scholar 

  29. Bradford PG, Gerace KV, Roland RL, Chrzan BG (2010) Estrogen regulation of apoptosis in osteoblasts. Physiol Behav 99:181–185

    Article  PubMed  CAS  Google Scholar 

  30. Li X, Han Y, Guan Y, Zhang L, Bai C, Li Y (2012) Aluminum induces osteoblast apoptosis through the oxidative stress-mediated JNK signaling pathway. Biol Trace Elem Res 150:502–508

    Article  PubMed  CAS  Google Scholar 

  31. Cao Z, Liu D, Zhang Q, Sun X, Li Y (2016) Aluminum chloride induces osteoblasts apoptosis via disrupting calcium homeostasis and activating Ca(2+)/CaMKII signal pathway. Biol Trace Elem Res 169:247–253

    Article  PubMed  CAS  Google Scholar 

  32. Saikumar P, Dong Z, Mikhailov V, Denton M, Weinberg JM, Venkatachalam MA (1999) Apoptosis: definition mechanisms and relevance to disease. Am J Med 107:489–506

    Article  PubMed  CAS  Google Scholar 

  33. Liu W, Zhao H, Wang Y, Jiang C, Xia P, Gu J, Liu X, Bian J, Yuan Y, Liu Z (2014) Calcium-calmodulin signaling elicits mitochondrial dysfunction and the release of cytochrome c during cadmium-induced apoptosis in primary osteoblasts. Toxicol Lett 224:1–6

    Article  PubMed  CAS  Google Scholar 

  34. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    Article  PubMed  CAS  Google Scholar 

  35. Wiren KM, Toombs AR, Semirale AA, Zhang X (2006) Osteoblast and osteocyte apoptosis associated with androgen action in bone: requirement of increased Bax/Bcl-2 ratio. Bone 38:637–651

    Article  PubMed  CAS  Google Scholar 

  36. Liang M, Russell G, Hulley PA (2008) Bim, Bak, and Bax regulate osteoblast survival. J Bone Miner Res 23:610–620

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Yang D, Okamura H, Teramachi J, Haneji T (2016) Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein. Bim Biochim Biophys Acta 1863:650–659

    Article  PubMed  CAS  Google Scholar 

  38. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 8:e1000412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. National Research Council Committee for the Update of the Guide for the Care and Use of Laboratory Animal (2011) The National Academies Collection: reports funded by National Institutes of Health. Guide for the Care and Use of Laboratory Animals. National Academies Press (US) National Academy of Sciences, Washington (DC)

    Google Scholar 

  40. Du X, Shi Z, Peng Z, Zhao C, Zhang Y, Wang Z, Li X, Liu G, Li X (2017) Acetoacetate induces hepatocytes apoptosis by the ROS-mediated MAPKs pathway in ketotic cows. J Cell Physiol 232:3296–3308

    Article  PubMed  CAS  Google Scholar 

  41. Song Y, Li N, Gu J, Fu S, Peng Z, Zhao C, Zhang Y, Li X, Wang Z, Li X, Liu G (2016) β-Hydroxybutyrate induces bovine hepatocyte apoptosis via an ROS-p38 signaling pathway. J Dairy Sci 99:9184–9198

    Article  PubMed  CAS  Google Scholar 

  42. Sun XD, Yuan X, Chen L, Wang TT, Wang Z, Sun GQ, Li XB, Li XW, Liu GW (2017) Histamine induces bovine rumen epithelial cell inflammatory response via NF-κB pathway. Cell Physiol Biochem 42:1109–1119

    Article  PubMed  CAS  Google Scholar 

  43. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Kovacic N, Grcevic D, Katavic V, Lukic IK, Grubisic V, Mihovilovic K, Cvija H, Croucher PI, Marusicb A (2010) Fas receptor is required for estrogen deficiency-induced bone loss in mice. Lab Investig 90:402–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Bu R, Borysenko CW, Li Y, Cao L, Sabokbar A, Blair HC (2003) Expression and function of TNF-family proteins and receptors in human osteoblasts. Bone 33:760–770

    Article  PubMed  CAS  Google Scholar 

  46. Duque G, Abdaimi KE, Henderson JE, Lomri A, Kremer R (2004) Vitamin D inhibits Fas ligand-induced apoptosis in human osteoblasts by regulating components of both the mitochondrial and Fas-related pathways. Bone 35:57–64

    Article  PubMed  CAS  Google Scholar 

  47. Prakash D, Sudhandiran G (2015) Dietary flavonoid fisetin regulates aluminium chloride-induced neuronal apoptosis in cortex and hippocampus of mice brain. J Nutr Biochem 26:1527–1539

    Article  PubMed  CAS  Google Scholar 

  48. Bushinsky DA (1997) Bone disease in moderate renal failure: cause, nature and prevention. Annu Rev Med 48:167–176

    Article  PubMed  CAS  Google Scholar 

  49. M’Bemba-Meka P, Lemieux N, Chakrabarti SK (2006) Role of oxidative stress mitochondrial membrane potential and calcium homeostasis in nickel subsulfide-induced human lymphocyte death in vitro. Sci Total Environ 369:21–34

    Article  PubMed  CAS  Google Scholar 

  50. Ge R, Ma WH, Li YL, Li QS (2013) Apoptosis induced neurotoxicity of Di-n-butyl-di-(4-chlorobenzohydroxamato) Tin (IV) via mitochondria-mediated pathway in PC12 cells. Toxicol in Vitro 27:92–102

    Article  PubMed  CAS  Google Scholar 

  51. Tang CH, Chiu YC, Huang CF, Chen YW, Chen PC (2009) Arsenic induces cell apoptosis in cultured osteoblasts through endoplasmic reticulum stress. Toxicol Appl Pharmacol 241:173–181

    Article  PubMed  CAS  Google Scholar 

  52. Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157

    Article  PubMed  CAS  Google Scholar 

  53. Aly HA (2013) Aroclor 1254 induced oxidative stress and mitochondria mediated apoptosis in adult rat sperm in vitro. Environ Toxicol Pharmacol 36:274–283

    Article  PubMed  CAS  Google Scholar 

  54. Hwang JK, Min KH, Choi KH, Hwang YC, Jeong IK, Ahn KJ, Chung HY, Chang JS (2013) Bisphenol A reduces differentiation and stimulates apoptosis of osteoclasts and osteoblasts. Life Sci 93:367–372

    Article  PubMed  CAS  Google Scholar 

  55. Savory J, Rao JK, Huang Y, Letada PR, Herman MM (1999) Age-related hippocampal changes in Bcl-2:Bax ratio oxidative stress redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging. Neurotoxicology 20:805–817

    PubMed  CAS  Google Scholar 

  56. Ghribi O, Herman MM, Forbes MS, DeWitt DA, Savory J (2001) GDNF protects against aluminum-induced apoptosis in rabbits by upregulating Bcl-2 and Bcl-XL and inhibiting mitochondrial Bax translocation. Neurobiol Dis 8:764–773

    Article  PubMed  CAS  Google Scholar 

  57. Nagase Y, Iwasawa M, Akiyama T, Kadono Y, Nakamura M, Oshima Y, Yasui T, Matsumoto T, Hirose J, Nakamura H, Miyamoto T, Bouillet P, Nakamura K, Tanaka S (2009) Anti-apoptotic molecule Bcl-2 regulates the differentiation activation and survival of both osteoblasts and osteoclasts. J Biol Chem 284:36659–36669

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Chittenden T, Harrington EA, O’Connor R, Flemington C, Lutz RJ, Evan GI, Guild BC (1995) Induction of apoptosis by the Bcl-2 homologue Bak. Nature 374:733–736

    Article  PubMed  CAS  Google Scholar 

  59. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD (1997) The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275:1132–1136

    Article  PubMed  CAS  Google Scholar 

  60. Herr I, Debatin KM (2001) Cellular stress response and apoptosis in cancer therapy. Blood 98:2603–2614

    Article  PubMed  CAS  Google Scholar 

  61. Wang K, Yin XM, Chao DT, Milliman CL, Korsmeyer SJ (1996) BID: a novel BH3 domain-only death agonist. Genes Dev 10:2859–2869

    Article  PubMed  CAS  Google Scholar 

  62. Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid Bax and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342

    Article  PubMed  CAS  Google Scholar 

  63. Billen LP, Shamas-Din A, Andrews DW (2008) Bid: a Bax-like BH3 protein. Oncogene 27(Suppl 1):S93–104

    Article  PubMed  CAS  Google Scholar 

  64. Kook S, Zhan X, Cleghorn WM, Benovic JL, Gurevich VV, Gurevich EV (2014) Caspase-cleaved arrestin-2 and BID cooperatively facilitate cytochrome C release and cell death. Cell Death Differ 21:172–184

    Article  PubMed  CAS  Google Scholar 

  65. Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta 1813:558–563

    Article  PubMed  CAS  Google Scholar 

  66. Scaffidi C, Fulda S, Srinivasan A, Friesen C, Li F, Tomaselli KJ, Debatin KM, Krammer PH, Peter ME (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Hellebrand EE, Varbiro G (2010) Development of mitochondrial permeability transition inhibitory agents: a novel drug target. Drug Discov Ther 4:54–61

    PubMed  CAS  Google Scholar 

Download references

Funding

The study was supported by grants from the Natural Science Foundation of Heilongjiang Province (C201425) and the National Science Foundation Project (31372496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanfei Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, F., Ren, L., Song, M. et al. Fas- and Mitochondria-Mediated Signaling Pathway Involved in Osteoblast Apoptosis Induced by AlCl3 . Biol Trace Elem Res 184, 173–185 (2018). https://doi.org/10.1007/s12011-017-1176-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-017-1176-y

Keywords

Navigation