Skip to main content
Log in

Functional Improvement in Rats’ Pancreatic Islets Using Magnesium Oxide Nanoparticles Through Antiapoptotic and Antioxidant Pathways

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

According to undiscovered toxicity and safety of magnesium oxide nanoparticles (MgO NPs) in isolated pancreatic islet cells, this study was designed to examine the effects of its various concentrations on a time-course basis on the oxidative stress, viability, and function of isolated islets of rat’s pancreas. Pancreatic islets were isolated and exposed to different MgO NP (<100 nm) concentrations within three different time points. After that, oxidative stress biomarkers were investigated and the best exposure time was selected. Then, safety of MgO NPs was investigated by flow cytometry and fluorescent staining, and levels of insulin secretion and caspase activity were measured. The results illustrated a considerable decrease in oxidative stress markers such as reactive oxygen species (ROS) and lipid peroxidation (LPO) levels of pancreatic islets which were treated by MgO NPs for 24 h. Also, in that time of exposure, cell apoptosis investigation by flow cytometry and insulin test showed that MgO NPs, in a concentration of 100 μg/ml, decreased the rate of apoptotic cells via inhibiting caspase-9 activity and made a significant increase in the level of insulin secretion. Data of function and apoptosis biomarkers correlated with each other. It is concluded that the use of MgO NPs in concentration of as low as 100 μg/ml can induce antiapoptotic, antioxidative, and antidiabetic effects in rat pancreatic islets, which support its possible benefit in islet transplantation procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AO:

Acridine orange

BSA:

Bovine serum albumin

DCFH-DA:

2′,7′-Dichlorodihydrofluorescein diacetate

EB:

Ethidium bromide

FRAP:

Ferric reducing antioxidant power

LPO:

Lipid peroxidation

MgO NPs:

Magnesium oxide nanoparticle

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

NPs:

Nanoparticles

ROS:

Reactive oxygen species

TAP:

Total antioxidant power

TBA:

Thiobarbituric acid

TEM:

Transmission electron microscope

TPTZ:

2,4,6-Tripyridyl-s-triazine

UV-Vis:

Ultraviolet visible

References

  1. Mody VV, Siwale R, Singh A, Mody HR (2010) Introduction to metallic nanoparticles. Int J Pharm Bio Sci 2(4):282–289

    CAS  Google Scholar 

  2. Shoae-Hagh P, Rahimifard M, Navaei-Nigjeh M, Baeeri M, Gholami M, Mohammadirad A, et al. (2014) Zinc oxide nanoparticles reduce apoptosis and oxidative stress values in isolated rat pancreatic islets. Biol Trace Elem Res 162(1–3):262–269

    Article  CAS  PubMed  Google Scholar 

  3. Rahimifard M, Navaei-Nigjeh M, Mahroui N, Mirzaei S, Siahpoosh Z, Nili-Ahmadabadi A, et al. (2014) Improvement in the function of isolated rat pancreatic islets through reduction of oxidative stress using traditional Iranian medicine. Cell J 16(2):147–163

    PubMed  PubMed Central  Google Scholar 

  4. Hosseini A, Baeeri M, Rahimifard M, Navaei-Nigjeh M, Mohammadirad A, Pourkhalili N, et al. (2013) Antiapoptotic effects of cerium oxide and yttrium oxide nanoparticles in isolated rat pancreatic islets. Hum Exp Toxicol 32(5):544–553

    Article  CAS  PubMed  Google Scholar 

  5. Kiranmai G, Reddy AR (2013) Antioxidant status in MgO nanoparticle-exposed rats. Toxicol Ind Health 29(10):897–903

    Article  CAS  PubMed  Google Scholar 

  6. Jahangiri L, Kesmati M, Najafzadeh H (2013) Evaluation of analgesic and anti-inflammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine. Eur Rev Med Pharmacol Sci 17(20):2706–2710

    CAS  PubMed  Google Scholar 

  7. Patel MK, Md Z, Rizvi Moshahid Alam M, Agrawal VV, Ansari ZA, Malhotra BD, et al. (2013) Antibacterial and cytotoxic effect of magnesium oxide nanoparticles on bacterial and human cells. J Nanoeng Nanomanuf 3(2):162–166

    Article  CAS  Google Scholar 

  8. Kumaran RS, Choi YK, Singh V, Song HJ, Song KG, Kim KJ, et al. (2015) In vitro cytotoxic evaluation of MgO nanoparticles and their effect on the expression of ROS genes. Int J Mol Sci 16(4):7551–7564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Carranza K, Veron D, Cercado A, Bautista N, Pozo W, Tufro A, et al. (2015) Cellular and molecular aspects of diabetic nephropathy and the role of VEGF-A. Nefrologia 35(2):131–138

    Article  PubMed  Google Scholar 

  10. Mohseni Salehi Monfared SS, Larijani B, Abdollahi M (2009) Islet transplantation and antioxidant management: a comprehensive review. World J Gastroenterol 15(10):1153–1161

    Article  PubMed  Google Scholar 

  11. Kanter M, Coskun O, Korkmaz A, Oter S (2004) Effects of Nigella sativa on oxidative stress and beta-cell damage in streptozotocin-induced diabetic rats. Anat Rec A: Discov Mol Cell Evol Biol 279(1):685–691

    Article  Google Scholar 

  12. Gilbert K, Godbout R, Rousseau G (2016) Caspase-3 activity in the rat amygdala measured by spectrofluorometry after myocardial infarction. J Vis Exp 107:e53207

    Google Scholar 

  13. Astaneie F, Afshari M, Mojtahedi A, Mostafalou S, Zamani MJ, Larijani B, et al. (2005) Total antioxidant capacity and levels of epidermal growth factor and nitric oxide in blood and saliva of insulin-dependent diabetic patients. Arch Med Res 36(4):376–381

    Article  CAS  PubMed  Google Scholar 

  14. Jowzi N, Rahimifard M, Navaei-Nigjeh M, Baeeri M, Darvishi B, et al. (2016) Reduction of chlorpyrifos-induced toxicity in human lymphocytes by selected phosphodiesterase inhibitors. Pestic Biochem Physiol 28:57–62

    Article  Google Scholar 

  15. Rahimifard M, Navaei-Nigjeh M, Baeeri M, Maqbool F, Abdollahi M (2015) Multiple protective mechanisms of alpha-lipoic acid in oxidation, apoptosis and inflammation against hydrogen peroxide induced toxicity in human lymphocytes. Mol Cell Biochem 403(1–2):179–186

    Article  CAS  PubMed  Google Scholar 

  16. Attari F, Sepehri H, Delphi L, Goliaei B (2009) Apoptotic and necrotic effects of pectic acid on rat pituitary GH3/B6 tumor cells. Iran Biomed J 13(4):229–236

    CAS  PubMed  Google Scholar 

  17. Ramkumar KM, Sekar TV, Bhakkiyalakshmi E, Foygel K, Rajaguru P, Berger F, et al. (2013) The impact of oxidative stress on islet transplantation and monitoring the graft survival by non-invasive imaging. Curr Med Chem 20(9):1127–1146

    Article  CAS  PubMed  Google Scholar 

  18. Karlsson HL, Gustafsson J, Cronholm P, Möller L (2009) Size-dependent toxicity of metal oxide particles—a comparison between nano- and micrometer size. Toxicol Lett 188(2):112–118

    Article  CAS  PubMed  Google Scholar 

  19. Arora S, Rajwade JM, Paknikar KM (2012) Nanotoxicology and in vitro studies: the need of the hour. Toxicol Appl Pharmacol 258(2):151–165

    Article  CAS  PubMed  Google Scholar 

  20. Chalkidou A, Simeonidis K, Angelakeris M, Samaras T, Martinez C, Boubeta, et al. (2011) In vitro application of Fe/MgO nanoparticles as magnetically mediated hyperthermia agents for cancer treatment. J Magn Magn Mater 323(6):775–780

    Article  CAS  Google Scholar 

  21. Fukui H, Horie M, Endoh S, Kato H, Fujita K, Nishio K, et al. (2012) Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem Biol Interact 198(1):29–37

    Article  CAS  PubMed  Google Scholar 

  22. Jo DH, Kim JH, Lee TG, Kim JH (2015) Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 11(7):1603–1611

    CAS  PubMed  Google Scholar 

  23. Heydary V, Navaei-Nigjeh M, Rahimifard M, Mohammadirad A, et al. (2015) Biochemical and molecular evidences on the protection by magnesium oxide nanoparticles of chlorpyrifos-induced apoptosis in human lymphocytes. J Res Med Sci 20:1021–1031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hans CP, Chaudhary DP, Bansal DD (2002) Magnesium deficiency increases oxidative stress in rats. Indian J Exp Biol 40(11):1275–1279

    CAS  PubMed  Google Scholar 

  25. Buha A, Bulat Z, Dukić-Ćosić D, Matović V (2012) Effects of oral and intraperitoneal magnesium treatment against cadmium-induced oxidative stress in plasma of rats. Arh Hig Rada Toksikol 63(3):247–254

    Article  CAS  PubMed  Google Scholar 

  26. Süzer T, Coskun E, Islekel H, Tahta K (1999) Neuroprotective effect of magnesium on lipid peroxidation and axonal function after experimental spinal cord injury. Spinal Cord 37(7):480–484

    Article  PubMed  Google Scholar 

  27. Ge S, Wang G, Shen Y, Zhang Q, Jia D, Wang H, et al. (2001) Cytotoxic effects of MgO nanoparticles on human umbilical vein endothelial cells in vitro. IET Nanotechnol 5(2):36

    Article  Google Scholar 

  28. Würstle ML, Laussmann MA, Rehm M (2012) The central role of initiator caspase-9 in apoptosis signal transduction and the regulation of its activation and activity on the apoptosome. Exp Cell Res 318(11):1213–1220

    Article  PubMed  Google Scholar 

  29. Zhou H, Ma Y, Zhou Y, Liu Z, et al. (2003) Effects of magnesium sulfate on neuron apoptosis and expression of caspase-3, bax and bcl-2 after cerebral ischemia-reperfusion injury. Chin Med J 116:1532–1534

    CAS  PubMed  Google Scholar 

  30. Kaufmann SH, Hengartner MO (2011) Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11:526–534

    Article  Google Scholar 

  31. Graciano MF, Valle MM, Kowluru A, Curi R, Carpinelli AR (2001) Regulation of insulin secretion and reactive oxygen species production by free fatty acids in pancreatic islets. Islets 3(5):213–223

    Article  Google Scholar 

  32. Alkaladi A, Abdelazim AM, Afifi M (2014) Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci 15(2):2015–2023

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank the Pharmaceutical Sciences Research Center of TUMS for the partial support of this study (Grant No.: 94-01-45-28957). The assistance of Iran National Science Foundation (INSF) is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Abdollahi.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Shermineh Moeini-Nodeh and Mahban Rahimifard contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moeini-Nodeh, S., Rahimifard, M., Baeeri, M. et al. Functional Improvement in Rats’ Pancreatic Islets Using Magnesium Oxide Nanoparticles Through Antiapoptotic and Antioxidant Pathways. Biol Trace Elem Res 175, 146–155 (2017). https://doi.org/10.1007/s12011-016-0754-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0754-8

Keywords

Navigation