Skip to main content

Advertisement

Log in

Effects of Dietary Zinc Pectin Oligosaccharides Chelate Supplementation on Growth Performance, Nutrient Digestibility and Tissue Zinc Concentrations of Broilers

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The experiment was conducted to investigate the effects of zinc pectin oligosaccharides (Zn-POS) chelate on growth performance, nutrient digestibility, and tissue zinc concentrations of Arbor Acre broilers aged from 1 to 42 days. A total of 576 1-day-old broilers were randomly assigned into 4 groups with 9 replicates per group and 16 chicks per replicate. Chicks were fed either a basal diet (control) or basal diet supplemented with Zn-POS at 300 (Zn-POS-300), 600 (Zn-POS-600), or 900 mg/kg (Zn-POS-900), respectively, for 42 days. A 3-day metabolism trial was conducted during the last week of the experiment feeding. The average daily gain and the average daily feed intake of Zn-POS-600 were significantly higher (P < 0.05) than those of either the control, Zn-POS-300, or Zn-POS-900. Zn-POS-600 had the highest apparent digestibility of dry matter, crude protein, and metabolic energy among all groups. The control group had the lowest apparent digestibility of dry matter (P < 0.05), whereas the apparent digestibility of dry matter in Zn-POS-600 was higher (P < 0.05) than that of Zn-POS-300. The apparent digestibility of crude protein in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) compared to Zn-POS-300 or the control. The apparent digestibility of metabolic energy in Zn-POS-600 or Zn-POS-900 was higher (P < 0.05) than that of Zn-POS-300. Zn-POS-600 had the highest liver zinc concentrations (P < 0.05), while Zn-POS-900 had the highest pancreatic zinc concentrations (P < 0.05). Our data suggest that the supplementation of 600 mg/kg Zn-POS is optimal in improving the average daily gain and the average daily feed intake, utilization of dietary dry matter and crude protein, and increasing tissue zinc concentrations in liver and pancreas of broilers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Zn-POS:

Zinc pectin oligosaccharides chelate

FBW:

Final body weight

ADG:

Average daily gain

ADFI:

Average daily feed intake

F/G:

Feed gain ratio

DM:

Dry matter

CP:

Crude protein

EE:

Ether extract

ME:

Metabolic energy

AIA:

Acid insoluble ash

UA:

Uric acid

References

  1. Vallee BL, Falchuk KH (1993) The biochemical basis of zinc physiology. Physiol Rev 73:79–118

    CAS  PubMed  Google Scholar 

  2. Gaither LA, Eide DJ (2004) Eukaryotic zinc transporters and their regulation. Chin Bull Life Sci 14:65–84

    Google Scholar 

  3. Park SY, Birkhold SG, Kubena LF, Nisbet DJ, Ricke SC (2004) Review on the role of dietary zinc in poultry nutrition, immunity, and reproduction. Biol Trace Elem Res 101:147–163

    Article  CAS  PubMed  Google Scholar 

  4. LöNnerdal B (2000) Dietary factors influencing zinc absorption. J Nutr 130:1378S–1383S

    PubMed  Google Scholar 

  5. Huang YL, Lu L, Luo XG, Liu B (2007) An optimal dietary zinc level of broiler chicks fed a corn-soybean meal diet. Poult Sci 86:2582–2589

    Article  CAS  PubMed  Google Scholar 

  6. Huang YL, Lu L, Li SF, Luo XG, Liu B (2009) Relative bioavailabilities of organic zinc sources with different chelation strengths for broilers fed a conventional corn-soybean meal diet. J Anim Sci 87:2038–2046

    Article  CAS  PubMed  Google Scholar 

  7. Dong X, Han Y, Li XU, Zhou G (2003) Study of zinc absorption and transport of zinc amino chelate by rats in different physiological status. J Northeast Agric Univ 34:34–42

    Google Scholar 

  8. Wedekind KJ, Hortin AE, Baker DH (1992) Methodology for assessing zinc bioavailability: efficacy estimates for zinc-methionine, zinc sulfate, and zinc oxide. J Anim Sci 70:178–187

    Article  CAS  PubMed  Google Scholar 

  9. Rojas LX, Well LR, Cousins RJ, Martin FG, Wilkinson NS, Johnson AB, Velasquez JB (1995) Relative bioavailability of two organic and two inorganic zinc sources fed to sheep. J Anim Sci 73:1202–1207

    Article  CAS  PubMed  Google Scholar 

  10. Lowe JA, Wiseman J, Cole DJ (1995) Absorption and retention of zinc when administered as an amino-acid chelate in the dog. J Nutr 124:2572S–2574S

    Google Scholar 

  11. Lowe JA, Wiseman J, Cole DJ (1994) Zinc source influences zinc retention in hair and hair growth in the dog. J Nutr 124:2575S–2576S

    CAS  PubMed  Google Scholar 

  12. Xin W, Xin L (2014) Characterization of pectic polysaccharides extracted from apple pomace by hot-compressed water. Carbohydr Polym 102:174–184

    Article  Google Scholar 

  13. Concha OJZ, Hansen ME (2012) Enzymatic depolymerization of sugar beet pulp: production and characterization of pectin and pectic-oligosaccharides as a potential source for functional carbohydrates. Chem Eng J 192:29–36

    Article  Google Scholar 

  14. Mandalari G, Palop CN, Tuohy K, Gibson GR, Bennett RN, Waldron KW, Bisignano G, Narbad A, Faulds CB (2007) In vitro evaluation of the prebiotic activity of pectic oligosaccharide-rich extract enzymatically derived from bergamot peel. Appl Environ Microb 73:1173–1179(1177)

    CAS  Google Scholar 

  15. Sabajanes MM, Yáñez R, Alonso JL, Parajó JC (2012) Pectic oligosaccharides production from orange peel waste by enzymatic hydrolysis. Int J Food Sci Tech 47:747–754

    Article  CAS  Google Scholar 

  16. Manderson K, Pinart MTuohy KM, Grace WE, Hotchkiss AT, Widmer W, Yadhav MP, Gibson GR, Rastall RA (2005) In vitro determination of prebiotic properties of oligosaccharides derived from an orange juice manufacturing by-product stream. Appl Environ Microb 71:8383–8389

    Article  CAS  Google Scholar 

  17. Li T, Li S, Du L, Wang N, Guo M, Zhang J, Yan F, Zhang H (2010) Effects of haw pectic oligosaccharide on lipid metabolism and oxidative stress in experimental hyperlipidemia mice induced by high-fat diet. Food Chem 121:1010–1013

    Article  CAS  Google Scholar 

  18. Li S, Li T, Zhu R, Wang N, Song Y, Guo SW, Mei (2013) Antibacterial action of haw pectic oligosaccharides. Int J Food Prop 16:706–712

    Article  CAS  Google Scholar 

  19. Lama-Muñoz A, Rodríguez-Gutiérrez G, Rubio-Senent F, Fernández-Bolaños J (2012) Production, characterization and isolation of neutral and pectic oligosaccharides with low molecular weights from olive by-products thermally treated. Food Hydrocoll 28:92–104

    Article  Google Scholar 

  20. Hyun Joo A, Susan LL, Carl G, Danielle R, Crystal K, Labavitch JM, Lebrilla CB (2005) Determination of pathogen-related enzyme action by mass spectrometry analysis of pectin breakdown products of plant cell walls. Anal Biochem 338:71–82

    Article  Google Scholar 

  21. Garthoff JA, Heemskerk S, Hempenius RA, Lina BAR, Krul CAM, Koeman JH, Speijers GJA (2010) Safety evaluation of pectin-derived acidic oligosaccharides (pAOS): genotoxicity and sub-chronic studies. Regul Toxicol Pharmacol 57:31–42

    Article  CAS  PubMed  Google Scholar 

  22. Fanaro S, Jelinek J, Stahl B, Boehm G, Kock R, Vigi V (2005) Acidic oligosaccharides from pectin hydrolysate as new component for infant formulae: effect on intestinal flora, stool characteristics, and pH. J Pediatr Gastroenterol Nutr 41:186–190

    Article  CAS  PubMed  Google Scholar 

  23. Jackson CL, Aden TM, Theobald LK, Tran NM, Beal TL, Manal E, Mu Yun G, Shirley RB, Stoffel MT, Vijay MK (2007) Pectin induces apoptosis in human prostate cancer cells: correlation of apoptotic function with pectin structure. Glycobiol 17:805–819(815)

    Article  CAS  Google Scholar 

  24. Kitada Y, Nakanishi N (1999) Mineral absorption promoting agent. US,

  25. Gori A, Rizzardini G, Van’T LB, Amor KB, Van SJ, Torti C, Quirino T, Tincati C, Bandera A, Knol J (2011) Specific prebiotics modulate gut microbiota and immune activation in HAART-naive HIV-infected adults: results of the “COPA” pilot randomized trial. Mucosal Immunol 4:554–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hotchkiss A, Olano-Martin E, Grace WE, Gibson GR, Rastall RA Pectic oligosaccharides as prebiotics. In: ACS symposium series, 2003. ACS Publications, pp 54–62

  27. Olano-Martin E, Williams MR, Gibson GR, Rastall RA (2003) Pectins and pectic-oligosaccharides inhibit Escherichia coli O157:H7 Shiga toxin as directed towards the human colonic cell line HT29. Fems Microbial Lett 218:101–105

    Article  CAS  Google Scholar 

  28. Guggenbichler JP, Meissner P, Jurenitsch J, De Bettignies-Dutz A (1998) Blocking the accumulation of germs on human cells. (PCT/EP94/03006). Anticancer Res 23:341–346

  29. Olano-Martin E, Rimbach GH, Gibson GR, Rastall RA (2003) Pectin and pectic-oligosaccharides induce apoptosis in in vitro human colonic adenocarcinoma cells. Anticancer Res 23:341–346

    CAS  PubMed  Google Scholar 

  30. Gomes PC, Rigueira DCM, Rostagno HS, Albino LFT, Brumano G, Schmidt M (2008) Zinc requirements for male and female broilers in the initial phase. Rev Bras Zootec 37:79–83

    Article  Google Scholar 

  31. Dale N (1994) National research council nutrient requirements of poultry - ninth revised edition (1994). J Appl Poult Res 3:101–101

    Article  Google Scholar 

  32. Huang Y (2008) Research advances in the nutrition requirement of zinc for broilers. Chin Feed.

    Google Scholar 

  33. Kerr RH (1969) The nutrient requirements of broilers. Vet Rec 85:344–348

  34. Rostagno H, Páez L, Albino L (2007) Nutrient requirements of broilers for optimum growth and lean mass. World Poultry Science Association, Proceedings of the 16th European Symposium on Poultry Nutrition, Strasbourg, France, 26–30 August, 2007. pp 91–98.

  35. Applegate TJ, Angel R (2014) Nutrient requirements of poultry publication: history and need for an update. J Appl Poult Res 23:567–575

    Article  Google Scholar 

  36. Yogesh K, Deo C, Shrivastava HP, Mandal AB, Wadhwa A, Singh I (2013) Growth performance, carcass yield, and immune competence of broiler chickens as influenced by dietary supplemental zinc sources and levels. Agr Res 2:270–274

    Article  CAS  Google Scholar 

  37. He T, Liu C (1995) A study on Zn requirement for broilers. Acta Zool Sinica.

    Google Scholar 

  38. AOAC (1990) Official methods of analysis. Association of Official Analytical Chemists, Inc, Arlington, VA, pp 1298

  39. Chen YP, Duan WG, Wang LL, Zhang SL, Zhou YM (2013) Effects of thermostable phytase supplementation on the growth performance and nutrient digestibility of broilers. Int J Poult Sci 12:441–444

    Article  Google Scholar 

  40. Sales J, Janssens GPJ (2003) The use of markers to determine energy metabolizability and nutrient digestibility in avian species. Worlds Poult Sci J 59:314–327

    Article  Google Scholar 

  41. Sales J, Janssens GPJ (2003) Methods to determine metabolizable energy and digestibility of feed ingredients in the domestic pigeon (Columba livia domestica). Poult Sci 82:1457–1461

    Article  CAS  PubMed  Google Scholar 

  42. Wen C, Wang LC, Zhou YM, Jiang ZY, Wang T (2012) Effect of enzyme preparation on egg production, nutrient retention, digestive enzyme activities and pancreatic enzyme messenger RNA expression of late-phase laying hens. Anim Feed Sci Tech 172:180–186

    Article  CAS  Google Scholar 

  43. Rocha JFXD, Aires AR, Nunes MAG, Flores EMM, Kozloski GV, Vargas ACD, Farias LDA, Cecim MDS, Leal MLDR (2013) Metabolism, intake, and digestibility of lambs supplemented with organic chromium. Biol Trace Elem Res 156:130–133

    Article  PubMed  Google Scholar 

  44. Dermauw V, Yisehak K, Dierenfeld ES, Laing GD, Buyse J, Wuyts B, Janssens GPJ (2013) Effects of trace element supplementation on apparent nutrient digestibility and utilisation in grass-fed zebu (Bos indicus) cattle. Livest Sci 155:255–261

    Article  Google Scholar 

  45. Zhao PY, Wang JP, Kim IH (2013) Effect of dietary levan fructan supplementation on growth performance, meat quality, relative organ weight, cecal microflora, and excreta noxious gas emission in broilers. J Anim Sci 91:5287–5293

    Article  CAS  PubMed  Google Scholar 

  46. Y.Nys CM (1999) Effect of dietary zinc content and sources on the growth, body zinc deposition and retention, zinc excretion and immune response in chickens. Brit Ppoultry Sci 40:108–114

    Article  Google Scholar 

  47. Jariwala M, Suvarna S, Kumar GK, Amin A, Udas AC (2014) Study of the concentration of trace elements Fe, Zn, Cu, Se and their correlation in maternal serum, cord serum and colostrums. Indian J Clin Biochem 29:181–188

    Article  CAS  PubMed  Google Scholar 

  48. Oksana Ivanišinová ĽG, Katarína Venglovská, Vladimíra, Oceľová MR, Klaudia Čobanová (2014) Effect of dietary zinc sources on its tissue deposition and activity of superoxide dismutase in liver of broilers. J Microbiol Biotechnol Food Sci 4:24–25

  49. Steyermark A (1984) Official methods of analysis of the association of official analytical chemists, 12th ed. by William Horwitz. J Assoc Off Anal Chem:iv.

  50. Keulen JV, Young BA (1977) Evaluation of acid-insoluble ash as natural marker in ruminant digestibility. J Anim Sci 44:282–287

    Article  Google Scholar 

  51. Atkinson JL, Hilton JW, Slinger SJ (2011) Evaluation of acid-insoluble ash as an indicator of feed digestibility in rainbow trout (Salmo gairdneri). Can J Fish Aquat Sci 41:1384–1386

    Article  Google Scholar 

  52. Terpstra K, Hart N (1973) The estimation of urinary nitrogen and faecal nitrogen in poultry excreta. Z Tierphysiol Tierernahr Futtermittelkd 32:306–320

    Article  Google Scholar 

  53. Kalmar ID, Werquin G, Janssens GPJ (2007) Apparent nutrient digestibility and excreta quality in African grey parrots fed two pelleted diets based on coarsely or finely ground ingredients. J Anim Physiol A Anim Nutr 91:210–216

    Article  CAS  Google Scholar 

  54. Steel RGD, Torrie JH (1960) Principles and procedures of statistics. McGraw-Hill, New York

  55. Dołęgowska B, Machoy Z, Chlubek D (2003) Changes in the content of zinc and fluoride during growth of the femur in chicken. Biol Trace Elem Res 91:67–76

    Article  PubMed  Google Scholar 

  56. Mocchegiani E, Muzzioli M, Giacconi R (2000) Zinc and immunoresistance to infection in aging: new biological tools. Trends Pharmacol Sci 21:205–208

    Article  CAS  PubMed  Google Scholar 

  57. Sadoval M, Henry PR, Littell RC, Miles RD, Butcher GD, Ammerman CB (1999) Effect of dietary zinc source and method of oral administration on performance and tissue trace mineral concentration of broiler chicks. J Anim Sci 77:1788–1799

    Article  CAS  PubMed  Google Scholar 

  58. Stahl JL, Greger JL, Cook ME (1990) Breeding-hen and progeny performance when hens are fed excessive dietary zinc. Poult Sci 69:259–263

    Article  CAS  PubMed  Google Scholar 

  59. Roberson KD, Edwards HM (1994) Effects of 1,25-dihydroxycholecalciferol and phytase on zinc utilization in broiler chicks. Poult Sci 73:1312–1326

    Article  CAS  PubMed  Google Scholar 

  60. Sandoval M, Henry PR, Luo XG, Littell RC, Miles RD, Ammerman CB (1998) Performance and tissue zinc and metallothionein accumulation in chicks fed a high dietary level of zinc. Poult Sci 77:1354–1363

    Article  CAS  PubMed  Google Scholar 

  61. Sahin K, Kucuk O (2003) Zinc supplementation alleviates heat stress in laying Japanese quail. J Nutr 133:2808–2811

    CAS  PubMed  Google Scholar 

  62. Rossi P, Rutz F, Anciuti MA (2007) Influence of graded levels of organic zinc on growth performance and carcass traits of broilers. J Appl Poult Res 16:219–225

    Article  CAS  Google Scholar 

  63. Swinkels JW, Kornegay ET, Verstegen MW (1994) Biology of zinc and biological value of dietary organic zinc complexes and chelates. Nutr Res Rev 7:129–149

    Article  CAS  PubMed  Google Scholar 

  64. Hahn JD, Baker DH (1993) Growth and plasma zinc responses of young pigs fed pharmacologic levels of zinc. J Anim Sci 71:3020–3024

    CAS  PubMed  Google Scholar 

  65. Lu C, Cao H, LiJianguo, Gao J (2002) Effects of supplemental zinc on nutrient digestibility in lactating cows. Chin Dairy Cattle.

    Google Scholar 

  66. Jia W, Jia Z, Zhang W, Wang R, Zhang S, Zhu X (2008) Effects of dietary zinc on performance, nutrient digestibility and plasma zinc status in cashmere goats. Small Rumin Res 80:68–72

    Article  Google Scholar 

  67. Øystein Ahlstrom AS (1995) Comparative nutrient digestibility in blue foxes (Alopex lagopus) and mink (Mustela vison) fed diets with diverging fat: carbohydrate ratios. Acta Agr Scand 45:74–80

    Google Scholar 

  68. Kumar S, Prasad N, Thakur S, Singh SK (2008) Effect of higher levels of zinc on nutrient utilization and mineral balance in indigenous pigs. Anim Nutr Feed Techn 8:285–288

    CAS  Google Scholar 

  69. Cheng N, Zhong LL, Yao JH, Liu YR, Wang YJ, Sun XQ, An XF (2007) Effect of supplemental levels of copper, lron, zinc, and manganese on growth performance and nutrient utilization in pullet. J Chin Cereals Oils Assoc 22:95–100

  70. Garg AK, Mudgala V, Dassa RS (2008) Effect of organic zinc supplementation on growth, nutrient utilization and mineral profile in lambs. Anim Feed Sci Tech 144:82–96

    Article  CAS  Google Scholar 

  71. Yang Y, Iji PA, Kocher A, Thomson E, Mikkelsen LL, Choct M (2008) Effects of mannanoligosaccharide in broiler chicken diets on growth performance, energy utilisation, nutrient digestibility and intestinal microflora. Brit Poultry Sci 49:186–194

    Article  CAS  Google Scholar 

  72. Chen J, Liang RH, Liu W, Li T, Liu CM, Wu SS, Wang ZJ (2013) Pectic-oligosaccharides prepared by dynamic high-pressure microfluidization and their in vitro fermentation properties. Carbohyd Polym 91:175–182

    Article  CAS  Google Scholar 

  73. Gullón B, Gullón P, Sanz Y, Alonso JL, Parajó JC (2011) Prebiotic potential of a refined product containing pectic oligosaccharides. Lwt - Food Sci Technol 44:1687–1696

    Article  Google Scholar 

  74. Ho Jin K, Cheorun J, Joong Ho K, Jun Ho S, Bong Jeon A, Myung Woo B (2006) Antioxidant and cancer cell proliferation inhibition effect of citrus pectin-oligosaccharide prepared by irradiation. J Med Food 9:313–320

    Article  Google Scholar 

  75. Garna H, Mabon N, Nott K, Wathelet B, Paquot M (2006) Kinetic of the hydrolysis of pectin galacturonic acid chains and quantification by ionic chromatography. Food Chem 96:477–484

    Article  CAS  Google Scholar 

  76. Choct M (2009) Managing gut health through nutrition. Brit Poultry Sci 50:9–15

    Article  CAS  Google Scholar 

  77. Crittenden R (2006) Emerging prebiotic carbohydrates. Prebiotics Development & Application Gibson, GR & Rastall, RA (Eds) John Wiley & Sons, Ltd Chichester England, pp 111-133

  78. Zopf D, Roth S (1996) Oligosaccharide anti-infective agents. Lancet 347:1017–1021

    Article  CAS  PubMed  Google Scholar 

  79. Fisher GL (1975) Function and homeostasis of copper and zinc in mammals. Sci Total Environ 4:373–412

    Article  CAS  PubMed  Google Scholar 

  80. Mandal GPRA, Samanta I, Biswas P (2011) Influence of dietary zinc and its sources on growth, body zinc deposition and immunity in broiler chicks. Indian J Anim Nuritr 28:5

    Google Scholar 

  81. Sahraei M, Janmohammadi H (2014) Relative bioavailability of different zinc sources based on tissue zinc concentration in broiler chickens. Iran J Appl Anim Sci.

    Google Scholar 

Download references

Acknowledgments

The funding for this study was from the Special Fund for Agro-scientific Research in the Public Interest (No. 201403047, 2011-G7). The staff of Key Laboratory for Feed Biotechnology of the Ministry of Agriculture is gratefully acknowledged for their valuable help in carrying out these experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiuhua Gao.

Additional information

Zhongcheng Wang and Huimin Yu contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Yu, H., Wu, X. et al. Effects of Dietary Zinc Pectin Oligosaccharides Chelate Supplementation on Growth Performance, Nutrient Digestibility and Tissue Zinc Concentrations of Broilers. Biol Trace Elem Res 173, 475–482 (2016). https://doi.org/10.1007/s12011-016-0654-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-016-0654-y

Keywords

Navigation