Skip to main content
Log in

Effects of Graded Levels of Chromium Methionine on Performance, Carcass Traits, Meat Quality, Fatty Acid Profiles of Fat, Tissue Chromium Concentrations, and Antioxidant Status in Growing-Finishing Pigs

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

A 97-day feeding trial was conducted to investigate the effects of dietary chromium methionine (CrMet) on performance, carcass traits, meat quality, fatty acid profiles of fat, tissue chromium concentrations, and antioxidant status in growing-finishing pigs. A total of 180 crossbred pigs with a mean initial body weight (BW) 30.18 ± 0.28 kg were allotted to 5 treatments with 6 replicates per treatment and 6 pigs per pen in a randomized complete block design based on BW and sex. Treatments were added with 0 (control), 100, 200, 400, and 800 μg/kg chromium as CrMet. Blood samples were obtained from the anterior vena cava on days 97. Carcass characteristics, pork quality, and tissue chromium concentration data were collected from one pig per pen. The results indicated that supplemental CrMet did not significantly affect growth performance, carcass traits, or meat amino acid profiles. Chromium at 100, 400, and 800 μg/kg decreased drip loss but increased shear force (P < 0.05). Pigs fed 100 or 400 μg/kg had a higher 24-h pH than the control (P < 0.05). While meat color, muscle moisture, crude protein, or crude fat were not affected by CrMet. Supplemental 800 μg/kg chromium reduced C18:0 levels in belly fat (P < 0.05), and chromium supplementation increased cis-9, trans 11-conjugated linoleic acid levels linearly (P < 0.05). Dietary CrMet supplementation increased serum, kidney, and muscle chromium contents (P < 0.05) but did not affect liver chromium contents. Besides, tissue chromium concentrations were increased linearly with increased chromium dosage (P < 0.05). Chromium at 400 μg/kg increased serum glutathione peroxidase activities (P < 0.05), and chromium at 800 μg/kg decreased serum total antioxidant capacity levels (P < 0.05). Nevertheless, liver and kidney antioxidant status were not significantly affected by CrMet. These results indicated that dietary supplementation CrMet did not significantly influence growth and carcass traits, but improved meat quality at the expense of tenderness. Therefore, the long-term exposure to 800 μg/kg chromium affected fatty acid compositions and reduced serum antioxidant capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schwarz K, Mertz W (1959) Chromium(III) and the glucose tolerance factor. Arch Biochem Biophys 85(1):292–295

    Article  CAS  PubMed  Google Scholar 

  2. Jeejeebhoy KN, Chu RC, Marliss EB, Greenberg GR, Brucerobertson A (1977) Chromium deficiency, glucose-intolerance, and neuropathy reversed by chromium supplementation, in a patient receiving long-germ total parenteral nutrition. Am J Clin Nutr 30(4):531–538

    CAS  PubMed  Google Scholar 

  3. Freund H, Atamian S, Fischer JE (1979) Chromium deficiency during total parenteral nutrition. JAMA 241(5):496–498

    Article  CAS  PubMed  Google Scholar 

  4. Simonoff M, Shapcott D, Alameddine S, Sutterdub MT, Simonoff G (1992) The isolation of glucose tolerance factors from brewers yeast and their relation to chromium. Biol Trace Elem Res 32:25–38. doi:10.1007/Bf02784584

    Article  CAS  PubMed  Google Scholar 

  5. Sumrall KH, Vincent JB (1997) Is glucose tolerance factor an artifact produced by acid hydrolysis of low-molecular-weight chromium-binding substance? Polyhedron 16(23):4171–4177

    Article  CAS  Google Scholar 

  6. Vincent JB (2015) Is the pharmacological mode of action of chromium (III) as a second messenger? Biol Trace Elem Res. doi:10.1007/s12011-015-0231-9

    Google Scholar 

  7. Vincent JB (2000) The biochemistry of chromium. J Nutr 130(4):715–718

    CAS  PubMed  Google Scholar 

  8. EFSA (European Food Safety Authority) (2009) Scientific Opinion of the Panel on Additives and Products or Substances used in Animal Feed (FEEDAP) on a request from the European Commission on the safety and efficacy of chromium methionine (Availa®Cr) as feed additive for all species. EFSA J 1043:1–69

    Google Scholar 

  9. Suksomboon N, Poolsup N, Yuwanakorn A (2014) Systematic review and meta-analysis of the efficacy and safety of chromium supplementation in diabetes. J Clin Pharm Ther 39(3):292–306. doi:10.1111/jcpt.12147

    Article  CAS  PubMed  Google Scholar 

  10. Zhou B, Wang H, Luo G, Niu R, Wang J (2013) Effect of dietary yeast chromium and L-carnitine on lipid metabolism of sheep. Biol Trace Elem Res 155(2):221–227. doi:10.1007/s12011-013-9790-9

    Article  CAS  PubMed  Google Scholar 

  11. Nielsen FH (2014) Should bioactive trace elements not recognized as essential, but with beneficial health effects, have intake recommendations. J Trace Elem Med Biol 28(4):406–408

    Article  CAS  PubMed  Google Scholar 

  12. Kegley EB, Fakler TM, Maxwell CV (1999) Effect of dietary chromium-L-methionine on glucose metabolism of growing pigs. J Anim Sci 77(Suppl 1):67. (Abstr.)

  13. Kegley EB, Galloway DL, Fakler TM (2000) Effect of dietary chromium-L-methionine on glucose metabolism of beef steers. J Anim Sci 78(12):3177–3183

    CAS  PubMed  Google Scholar 

  14. Emami A, Ganjkhanlou M, Zali A (2015) Effects of Cr methionine on glucose metabolism, plasma metabolites, meat lipid peroxidation, and tissue chromium in Mahabadi goat kids. Biol Trace Elem Res 164(1):50–57. doi:10.1007/s12011-014-0190-6

    Article  CAS  PubMed  Google Scholar 

  15. Jackson AR, Powell S, Johnston SL, Matthews JO, Bidner TD, Valdez FR, Southern LL (2009) The effect of chromium as chromium propionate on growth performance, carcass traits, meat quality, and the fatty acid profile of fat from pigs fed no supplemented dietary fat, choice white grease, or tallow. J Anim Sci 87(12):4032–4041. doi:10.2527/jas.2009-2168

    Article  CAS  PubMed  Google Scholar 

  16. Park JK, Lee JY, Chae BJ, Ohh SJ (2009) Effects of different sources of dietary chromium on growth, blood profiles and carcass traits in growing-finishing pigs. Asian Australas J Anim Sci 22(11):1547–1554

    Article  CAS  Google Scholar 

  17. Li YS, Zhu NH, Niu PP, Shi FX, Hughes CL, Tian GX, Huang RH (2013) Effects of dietary chromium methionine on growth performance, carcass composition, meat colour and expression of the colour-related gene myoglobin of growing-finishing pigs. Asian Australas J Anim Sci 26(7):1021–1029. doi:10.5713/ajas.2013.13012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Tian YY, Zhang LY, Dong B, Cao J, Xue JX, Gong LM (2014) Effects of chromium methionine supplementation on growth performance, serum metabolites, endocrine parameters, antioxidant status, and immune traits in growing pigs. Biol Trace Elem Res 162(1–3):134–141. doi:10.1007/s12011-014-0147-9

    Article  CAS  PubMed  Google Scholar 

  19. Evans GW, Bowman TD (1992) Chromium picolinate increases membrane fluidity and rate of insulin internalization. J Inorg Biochem 46(4):243–250. doi:10.1016/0162-0134(92)80034-S

    Article  CAS  PubMed  Google Scholar 

  20. Peng Z, Qiao W, Wang Z, Dai Q, He J, Guo C, Xu J, Zhou A (2010) Chromium improves protein deposition through regulating the mRNA levels of IGF-1, IGF-1R, and Ub in rat skeletal muscle cells. Biol Trace Elem Res 137(2):226–234. doi:10.1007/s12011-009-8579-3

    Article  CAS  PubMed  Google Scholar 

  21. NRC (2012) Nutrient requirements of swine, 11 revisedth edn. National Academic Press, Washington

    Google Scholar 

  22. NPPC (2000) Pork composition and quality assessment procedures. National Pork Producers Council, Des Moines

    Google Scholar 

  23. Honikel KO (1998) Reference methods for the assessment of physical characteristics of meat. Meat Sci 49(4):447–457

    Article  CAS  PubMed  Google Scholar 

  24. AOAC (2000) Official methods of analysis, 17 revisedth edn. Association of official analytical chemists, Washington

    Google Scholar 

  25. Bee G, Gebert S, Messikommer R (2002) Effect of dietary energy supply and fat source on the fatty acid pattern of adipose and lean tissues and lipogenesis in the pig. J Anim Sci 80(6):1564–1574

    CAS  PubMed  Google Scholar 

  26. AOCS (1998) Official methods and recommended practices, 5th edn. American Oil Chemists’ Society, Champaign

    Google Scholar 

  27. Lindemann MD, Cromwell GL, Monegue HJ, Purser KW (2008) Effect of chromium source on tissue concentration of chromium in pigs. J Anim Sci 86(11):2971–2978. doi:10.2527/jas.2008-0888

    Article  CAS  PubMed  Google Scholar 

  28. Lindemann MD (2007) Use of chromium as an animal feed supplement. In: Vincent JB (ed) The nutritional biochemistry of chromium(III). Elsevier, Amsterdam, pp 85–120

    Chapter  Google Scholar 

  29. Vincent JB (2013) Chromium: is it essential, pharmacologically relevant, or toxic? In: Sigel A, Sigel H, Sigel RK (eds) Interrelations between essential metal ions and human diseases. Springer, Netherlands, pp 171–198

    Chapter  Google Scholar 

  30. Sales J, Jancik F (2011) Effects of dietary chromium supplementation on performance, carcass characteristics, and meat quality of growing-finishing swine: a meta-analysis. J Anim Sci 89(12):4054–4067. doi:10.2527/jas.2010-3495

    Article  CAS  PubMed  Google Scholar 

  31. Lien TF, Wu CP, Wang BJ, Shiao MS, Shiao TY, Lin BH, Lu JJ, Hu CY (2001) Effect of supplemental levels of chromium picolinate on the growth performance, serum traits, carcass characteristics and lipid metabolism of growing-finishing pigs. Anim Sci 72:289–296

    CAS  Google Scholar 

  32. Wang MQ, He YD, Lindemann MD, Jiang ZG (2009) Efficacy of Cr (III) supplementation on growth, carcass composition, blood metabolites, and endocrine parameters in finishing pigs. Asian Australas J Anim Sci 22(10):1414–1419

    Article  CAS  Google Scholar 

  33. Wang MQ, Xu ZR, Li WF, Jiang ZG (2009) Effect of chromium nanocomposite supplementation on growth hormone pulsatile secretion and mRNA expression in finishing pigs. J Anim Physiol Anim Nutr 93(4):520–525. doi:10.1111/j.1439-0396.2008.00836.x

    Article  CAS  Google Scholar 

  34. Lien TF, Wu CP, Lin BH, Wang BJ, Lu JJ, Shiao TY (1998) Effect of different protein and limiting amino acid levels coupled with a supplement of chromium picolinate on lipid metabolism and carcass characteristics of pigs. Anim Sci 67:601–607

    Article  CAS  Google Scholar 

  35. McNamara JP, Valdez F (2005) Adipose tissue metabolism and production responses to calcium propionate and chromium propionate. J Dairy Sci 88(7):2498–2507. doi:10.3168/jds.S0022-0302(05)72927-1

    Article  CAS  PubMed  Google Scholar 

  36. Choi YJ, Kim HG, Cho JS, Chung IB, Kim YH, Han IK (1998) Effects of chromium picolinate on in vitro lipogenesis and lipolysis in adipose tissue and protein synthesis in liver tissue of pigs. Asian Australas J Anim Sci 11(4):428–433

    Article  CAS  Google Scholar 

  37. Wang MQ, Wang C, Du YJ, Li H, Tao WJ, Ye SS, He YD, Chen SY (2014) Effects of chromium-loaded chitosan nanoparticles on growth, carcass characteristics, pork quality, and lipid metabolism in finishing pigs. Livest Sci 161:123–129. doi:10.1016/j.livsci.2013.12.029

    Article  Google Scholar 

  38. Gonyou HW, Brumm MC, Bush E, Deen J, Edwards SA, Fangman T, McGlone JJ, Meunier-Salaun M, Morrison RB, Spoolder H, Sundberg PL, Johnson AK (2006) Application of broken-line analysis to assess floor space requirements of nursery and grower-finisher pigs expressed on an allometric basis. J Anim Sci 84(1):229–235

    CAS  PubMed  Google Scholar 

  39. Matthews JO, Guzik AC, Lemieux FM, Southern LL, Bidner TD (2005) Effects of chromium propionate on growth, carcass traits, and pork quality of growing-finishing pigs. J Anim Sci 83(4):858–862

  40. Huff-Lonergan E (2002) Water-holding capacity of fresh meat. Fact Sheet (04669). National pork board, Des Moines

    Google Scholar 

  41. Huff-Lonergan E, Lonergan SM (2005) Mechanisms of water-holding capacity of meat: the role of postmortem biochemical and structural changes. Meat Sci 71(1):194–204. doi:10.1016/j.meatsci.2005.04.022

    Article  CAS  PubMed  Google Scholar 

  42. Jelenikova J, Pipek P, Miyahara M (2008) The effects of breed, sex, intramuscular fat and ultimate pH on pork tenderness. Eur Food Res Technol 227(4):989–994. doi:10.1007/s00217-007-0810-x

    Article  CAS  Google Scholar 

  43. Zhang HB, Dong BJ, Zhang MH, Yang JJ (2011) Effect of chromium picolinate supplementation on growth performance and meat characteristics of swine. Biol Trace Elem Res 141(1–3):159–169

    Article  CAS  PubMed  Google Scholar 

  44. Samanta S, Haldar S, Bahadur V, Ghosh TK (2008) Chromium picolinate can ameliorate the negative effects of heat stress and enhance performance, carcass and meat traits in broiler chickens by reducing the circulatory cortisol level. J Sci Food Agric 88(5):787–796. doi:10.1002/Jsfa.3146

    Article  CAS  Google Scholar 

  45. Arvizu RR, Dominguez IA, Rubio MS, Borquez JL, Pinos-Rodriguez JM, Gonzalez M, Jaramillo G (2011) Effects of genotype, level of supplementation, and organic chromium on growth performance, carcass, and meat traits grazing lambs. Meat Sci 88(3):404–408. doi:10.1016/j.meatsci.2011.01.018

    Article  CAS  PubMed  Google Scholar 

  46. Roginski EE, Mertz W (1969) Effects of Chromium(3) supplementation on glucose and amino acid metabolism in rats fed a low protein diet. J Nutr 97(4):525–530

    CAS  PubMed  Google Scholar 

  47. Tang L, Fang R, Zhou R, Zhang K, Hu L (2013) Effects of different sources of dietary chromium on meat quality and amino acid content of broilers. J Zhejiang Univ (Agric Life Sci) 39(1):111–118. doi:10.3785/j.issn.1008-9209.2012.03.222 (In chinese with english abstract)

    CAS  Google Scholar 

  48. Grela ER, Studzinski T, Rabos A, Winiarska A, Dziduch J (1997) Effect of a chromium yeast supplement in growing-finishing pig diets on performance, carcass traits and fatty acid composition of adipose tissue. J Anim Feed Sci 6(1):87–100

    Google Scholar 

  49. Wang MQ, Wang C, Li H, Du YJ, Tao WJ, Ye SS, He YD (2012) Effects of chromium-loaded chitosan nanoparticles on growth, blood metabolites, immune traits and tissue chromium in finishing pigs. Biol Trace Elem Res 149(2):197–203. doi:10.1007/s12011-012-9428-3

    Article  CAS  PubMed  Google Scholar 

  50. Anderson RA, Bryden NA, Polansky MM, Gautschi K (1996) Dietary chromium effects on tissue chromium concentrations and chromium absorption in rats. J Trace Elem Exp Med 9(1):11–25

    Article  CAS  Google Scholar 

  51. Clodfelder BJ, Upchurch RG, Vincent JB (2004) A comparison of the insulin-sensitive transport of chromium in healthy and model diabetic rats. J Inorg Biochem 98(3):522–533. doi:10.1016/j.jinorgbio.2004.01.003

    Article  CAS  PubMed  Google Scholar 

  52. Clodfelder BJ, Vincent JB (2005) The time-dependent transport of chromium in adult rats from the bloodstream to the urine. J Biol Inorg Chem 10(4):383–393. doi:10.1007/s00775-005-0647-3

    Article  CAS  PubMed  Google Scholar 

  53. Ahmed N, Haldar S, Pakhira MC, Ghosh TK (2005) Growth performances, nutrient utilization and carcass traits in broiler chickens fed with a normal and a low energy diet supplemented with inorganic chromium (as chromium chloride hexahydrate) and a combination of inorganic chromium and ascorbic acid. J Agric Sci 143:427–439. doi:10.1017/S0021859605005617

    Article  CAS  Google Scholar 

  54. Shi XL, Leonard SS, Liu KJ, Zang LY, Gannett PM, Rojanasakul Y, Castranova V, Vallyathan V (1998) Cr(III)-mediated hydroxyl radical generation via Haber-Weiss cycle. J Inorg Biochem 69(4):263–268

    Article  CAS  Google Scholar 

  55. Mahmoud AA, Karam SH, Abdel-Wahhab MA (2006) Chromium-picolinate induced ocular changes: protective role of ascorbic acid. Toxicology 226(2–3):143–151. doi:10.1016/j.tox.2006.06.014

    Article  CAS  PubMed  Google Scholar 

  56. Tan GY, Zheng SS, Zhang MH, Feng JH, Xie P, Bi JM (2008) Study of oxidative damage in growing-finishing pigs with continuous excess dietary chromium picolinate intake. Biol Trace Elem Res 126(1–3):129–140. doi:10.1007/s12011-008-8207-7

    Article  CAS  PubMed  Google Scholar 

  57. Stearns DM (2007) Multiple hypotheses for chromium(III) biochemistry: why the essentiality of chromium(III) is still questioned. In: Vincent JB (ed) The nutritional biochemistry of chromium(III). Elsevier, Amsterdam, pp 57–70

    Chapter  Google Scholar 

Download references

Acknowledgments

This work was supported by Ministry of Agriculture of the People’s Republic of China. All authors are thankful for the help in laboratory analysis by staff of Ministry of Agriculture Feed Industry Centre.

Conflict of Interest

All authors have read the manuscript, and none have any potential conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Ying Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, YY., Gong, LM., Xue, JX. et al. Effects of Graded Levels of Chromium Methionine on Performance, Carcass Traits, Meat Quality, Fatty Acid Profiles of Fat, Tissue Chromium Concentrations, and Antioxidant Status in Growing-Finishing Pigs. Biol Trace Elem Res 168, 110–121 (2015). https://doi.org/10.1007/s12011-015-0352-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0352-1

Keywords

Navigation