Skip to main content

Advertisement

Log in

Tungsten Carbide-Cobalt Nanoparticles Induce Reactive Oxygen Species, AKT, ERK, AP-1, NF-κB, VEGF, and Angiogenesis

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Powder mixtures of tungsten carbide and metallic cobalt (WC-Co) are widely used in various products. Nanoparticles are engineered structures with at least one dimension of 100 nm or smaller. WC-Co is known to be associated with lung injury and diseases. Angiogenesis is a key process during vasculature, carcinogenesis, recovery of injury, and inflammatory diseases. However, the cellular effects of WC-Co nanoparticles on angiogenesis remain to be elucidated. In this study, we investigated angiogenic response and relative mechanisms after exposure to WC-Co nanoparticles. Our results showed that WC-Co nanoparticles at 5 μg/cm2 induced ROS production which activated AKT and ERK1/2 signaling pathways in lung epithelial cells by reactive oxygen species (ROS) staining and immunoblotting; WC-Co treatment also increased transcriptional activation of AP-1, NF-κB, and VEGF by reporter assay. Further studies demonstrated that ROS are upstream molecules of AKT and ERK signaling pathways; the activation of AP-1, NF-κB, and VEGF was through ROS generation, AKT and ERK1/2 activation. In addition, WC-Co nanoparticles affected the cells to induce angiogenesis by chicken chorioallantoic membrane (CAM) assay. These results illustrate that exposure to WC-Co nanoparticles induces angiogenic response by activating ROS, AKT, and ERK1/2 signaling pathways and the downstream molecules and elucidate the potential molecular mechanisms during this process. This information may be useful for preventing potential damage from nanoparticle exposure in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

WC-Co:

Tungsten carbide and metallic cobalt

ROS:

Reactive oxygen species

CAM:

Chicken chorioallantoic membrane

PBS:

Phosphate-buffered saline

DCFH-DA:

2′,7′-Dichlorofluorescein diacetate

H2O2 :

Hydrogen peroxide

AP-1:

Activator protein-1

NF-κB:

Nuclear factor kappa B

VEGF:

Vascular endothelial growth factor

ERK:

Extracellular signal regulated kinase

References

  1. Roco MC (2004) Science and technology integration for increased human potential and societal outcomes. Ann N Y Acad Sci 1013:1–16

    Article  PubMed  Google Scholar 

  2. Renwick LC, Brown D, Clouter A, Donaldson K (2004) Increased inflammation and altered macrophage chemotactic responses caused by two ultrafine particle types. Occup Environ Med 61:442–447

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Gradon L, Orlicki D, Podgorski A (2000) Deposition and retention of ultrafine aerosol particles in the human respiratory system. Normal and pathological cases. Int J Occup Saf Ergon 6:189–207

    CAS  PubMed  Google Scholar 

  4. Inoue K, Takano H, Yanagisawa R, Hirano S, Sakurai M, Shimada A, Yoshikawa T (2006) Effects of airway exposure to nanoparticles on lung inflammation induced by bacterial endotoxin in mice. Environ Health Perspect 114:1325–1330

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Roberts RA, Shen T, Allen IC, Hasan W, DeSimone JM, Ting JP (2013) Analysis of the murine immune response to pulmonary delivery of precisely fabricated nano- and microscale particles. PLoS One 8:e62115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Oberdorster G, Ferin J, Lehnert BE (1994) Correlation between particle size, in vivo particle persistence, and lung injury. Environ Health Perspect 102(Suppl 5):173–179

    Article  PubMed Central  PubMed  Google Scholar 

  7. Tanaka T, Kojima I, Ohse T, Ingelfinger JR, Adler S, Fujita T, Nangaku M (2005) Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model. Lab Invest 85:1292–1307

    Article  CAS  PubMed  Google Scholar 

  8. Moulin JJ, Wild P, Romazini S, Lasfargues G, Peltier A, Bozec C, Deguerry P, Pellet F, Pedrix A (1998) Lung cancer risk in hard-metal workers. Am J Epidemiol 148:241–248

    Article  CAS  PubMed  Google Scholar 

  9. Lison D, Carbonnelle P, Mollo L, Lauwerys R, Fubini B (1995) Physicochemical mechanism of the interaction between cobalt metal and carbide particles to generate toxic activated oxygen species. Chem Res Toxicol 8:600–606

    Article  CAS  PubMed  Google Scholar 

  10. Wild P, Perdrix A, Romazini S, Moulin JJ, Pellet F (2000) Lung cancer mortality in a site producing hard metals. Occup Environ Med 57:568–573

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Rinna A, Magdolenova Z, Hudecova A, Kruszewski M, Refsnes M, Dusinska M (2015) Effect of silver nanoparticles on mitogen-activated protein kinases activation: role of reactive oxygen species and implication in DNA damage. Mutagenesis 30:59–66

    Article  CAS  PubMed  Google Scholar 

  12. Durga M, Nathiya S, Rajasekar A, Devasena T (2014) Effects of ultrafine petrol exhaust particles on cytotoxicity, oxidative stress generation, DNA damage and inflammation in human A549 lung cells and murine RAW 264.7 macrophages. Environ Toxicol Pharmacol 38:518–530

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura Y, Nishizaka Y, Ariyasu R, Okamoto N, Yoshida M, Taki M, Nagano H, Hanaoka K, Nakagawa K, Yoshimura C, Wakayama T, Amitani R (2014) Hard metal lung disease diagnosed on a transbronchial lung biopsy following recurrent contact dermatitis. Intern Med 53:139–143

    Article  PubMed  Google Scholar 

  14. Kaneko Y, Kikuchi N, Ishii Y, Kawabata Y, Moriyama H, Terada M, Suzuki E, Kobayashi M, Watanabe K, Hizawa N (2010) Upper lobe-dominant pulmonary fibrosis showing deposits of hard metal component in the fibrotic lesions. Intern Med 49:2143–2145

    Article  PubMed  Google Scholar 

  15. Tanaka J, Moriyama H, Terada M, Takada T, Suzuki E, Narita I, Kawabata Y, Yamaguchi T, Hebisawa A, Sakai F, Arakawa H (2014) An observational study of giant cell interstitial pneumonia and lung fibrosis in hard metal lung disease. BMJ Open 4:e004407

    Article  PubMed Central  PubMed  Google Scholar 

  16. Wild P, Bourgkard E, Paris C (2009) Lung cancer and exposure to metals: the epidemiological evidence. Methods Mol Biol 472:139–167

    CAS  PubMed  Google Scholar 

  17. Armstead AL, Arena CB, Li B (2014) Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro. Toxicol Appl Pharmacol 278:1–8

    Article  CAS  PubMed  Google Scholar 

  18. Jiang BH, Zheng JZ, Aoki M, Vogt PK (2000) Phosphatidylinositol 3-kinase signaling mediates angiogenesis and expression of vascular endothelial growth factor in endothelial cells. Proc Natl Acad Sci U S A 97:1749–1753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bauer G (2000) Reactive oxygen and nitrogen species: efficient, selective, and interactive signals during intercellular induction of apoptosis. Anticancer Res 20:4115–4139

    CAS  PubMed  Google Scholar 

  21. Forman HJ, Fukuto JM, Torres M (2004) Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers. Am J Physiol Cell Physiol 287:C246–C256

    Article  CAS  PubMed  Google Scholar 

  22. Schieber M, Chandel NS (2014) ROS function in redox signaling and oxidative stress. Curr Biol 24:R453–R462

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Liu LZ, Hu XW, Xia C, He J, Zhou Q, Shi X, Fang J, Jiang BH (2006) Reactive oxygen species regulate epidermal growth factor-induced vascular endothelial growth factor and hypoxia-inducible factor-1alpha expression through activation of AKT and P70S6K1 in human ovarian cancer cells. Free Radic Biol Med 41:1521–1533

    Article  CAS  PubMed  Google Scholar 

  24. Carpenter RL, Jiang Y, Jing Y, He J, Rojanasakul Y, Liu LZ, Jiang BH (2011) Arsenite induces cell transformation by reactive oxygen species, AKT, ERK1/2, and p70S6K1. Biochem Biophys Res Commun 414:533–538

    Article  CAS  PubMed  Google Scholar 

  25. Hsu TC, Young MR, Cmarik J, Colburn NH (2000) Activator protein 1 (AP-1)- and nuclear factor kappaB (NF-kappaB)-dependent transcriptional events in carcinogenesis. Free Radic Biol Med 28:1338–1348

    Article  CAS  PubMed  Google Scholar 

  26. Manduteanu I, Dragomir E, Voinea M, Capraru M, Simionescu M (2007) Enoxaparin reduces H2O2-induced activation of human endothelial cells by a mechanism involving cell adhesion molecules and nuclear transcription factors. Pharmacology 79:154–162

    Article  CAS  PubMed  Google Scholar 

  27. Zhou Q, Liu LZ, Fu B, Hu X, Shi X, Fang J, Jiang BH (2007) Reactive oxygen species regulate insulin-induced VEGF and HIF-1alpha expression through the activation of p70S6K1 in human prostate cancer cells. Carcinogenesis 28:28–37

    Article  CAS  PubMed  Google Scholar 

  28. Folkman J (1974) Tumor angiogenesis. Adv Cancer Res 19:331–358

    CAS  PubMed  Google Scholar 

  29. Armstead AL, Minarchick VC, Porter DW, Nurkiewicz TR, Li B (2015) Acute inflammatory responses of nanoparticles in an intra-tracheal instillation rat model. PLoS One 10, e0118778

    Article  PubMed Central  PubMed  Google Scholar 

  30. Dunlop P, Muller NL, Wilson J, Flint J, Churg A (2005) Hard metal lung disease: high resolution CT and histologic correlation of the initial findings and demonstration of interval improvement. J Thorac Imaging 20:301–304

    Article  PubMed  Google Scholar 

  31. De Boeck M, Hoet P, Lombaert N, Nemery B, Kirsch-Volders M, Lison D (2003) In vivo genotoxicity of hard metal dust: induction of micronuclei in rat type II epithelial lung cells. Carcinogenesis 24:1793–1800

    Article  PubMed  Google Scholar 

  32. Stefaniak AB, Virji MA, Day GA (2009) Characterization of exposures among cemented tungsten carbide workers. Part I: size-fractionated exposures to airborne cobalt and tungsten particles. J Expo Sci Environ Epidemiol 19:475–491

    Article  CAS  PubMed  Google Scholar 

  33. Alvira CM (2014) Nuclear factor-kappa-B signaling in lung development and disease: one pathway, numerous functions. Birth Defects Res A Clin Mol Teratol 100:202–216

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Chopra M, Reuben JS, Sharma AC (2009) Acute lung injury: apoptosis and signaling mechanisms. Exp Biol Med (Maywood) 234:361–371

    Article  CAS  Google Scholar 

  35. Lee IT, Yang CM (2013) Inflammatory signalings involved in airway and pulmonary diseases. Mediators Inflamm 2013:791231

    PubMed Central  PubMed  Google Scholar 

  36. Verstrepen L, Beyaert R (2014) Receptor proximal kinases in NF-kappaB signaling as potential therapeutic targets in cancer and inflammation. Biochem Pharmacol 92:519–529

    Article  CAS  PubMed  Google Scholar 

  37. Shibuya M (2015) VEGF-VEGFR system as a target for suppressing inflammation and other diseases. Endocr Metab Immune Disord Drug Targets

  38. Connolly DT, Heuvelman DM, Nelson R, Olander JV, Eppley BL, Delfino JJ, Siegel NR, Leimgruber RM, Feder J (1989) Tumor vascular permeability factor stimulates endothelial cell growth and angiogenesis. J Clin Invest 84:1470–1478

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Yang L, Liu G, Lin Z, Wang Y, He H, Liu T, Kamp DW (2014) Pro-inflammatory response and oxidative stress induced by specific components in ambient particulate matter in human bronchial epithelial cells. Environ Toxicol

  40. Bae YS, Sung JY, Kim OS, Kim YJ, Hur KC, Kazlauskas A, Rhee SG (2000) Platelet-derived growth factor-induced H (2) O (2) production requires the activation of phosphatidylinositol 3-kinase. J Biol Chem 275:10527–10531

    Article  CAS  PubMed  Google Scholar 

  41. Finkel T (1998) Oxygen radicals and signaling. Curr Opin Cell Biol 10:248–253

    Article  CAS  PubMed  Google Scholar 

  42. May JM, de Haen C (1979) The insulin-like effect of hydrogen peroxide on pathways of lipid synthesis in rat adipocytes. J Biol Chem 254:9017–9021

    CAS  PubMed  Google Scholar 

  43. Schreck R, Albermann K, Baeuerle PA (1992) Nuclear factor kappa B: an oxidative stress-responsive transcription factor of eukaryotic cells (a review). Free Radic Res Commun 17:221–237

    Article  CAS  PubMed  Google Scholar 

  44. Vercellotti GM, Severson SP, Duane P, Moldow CF (1991) Hydrogen peroxide alters signal transduction in human endothelial cells. J Lab Clin Med 117:15–24

    CAS  PubMed  Google Scholar 

  45. Baumer AT, Ten Freyhaus H, Sauer H, Wartenberg M, Kappert K, Schnabel P, Konkol C, Hescheler J, Vantler M, Rosenkranz S (2008) Phosphatidylinositol 3-kinase-dependent membrane recruitment of Rac-1 and p47phox is critical for alpha-platelet-derived growth factor receptor-induced production of reactive oxygen species. J Biol Chem 283:7864–7876

    Article  PubMed  Google Scholar 

  46. Zhuang S, Kinsey G, Yan Y, Han J, Schnellmann R (2008) ERK activation mediates mitochondrial dysfunction and necrosis induced by hydrogen peroxide in renal proximal tubular cells. J Pharmacol Exp Ther 325:732–740

    Article  CAS  PubMed  Google Scholar 

  47. Tournier C, Thomas G, Pierre J, Jacquemin C, Pierre M, Saunier B (1997) Mediation by arachidonic acid metabolites of the H2O2-induced stimulation of mitogen-activated protein kinases (extracellular-signal-regulated kinase and c-Jun NH2-terminal kinase). Eur J Biochem 244:587–595

    Article  CAS  PubMed  Google Scholar 

  48. Ushio-Fukai M, Alexander RW, Akers M, Yin Q, Fujio Y, Walsh K, Griendling KK (1999) Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells. J Biol Chem 274:22699–22704

    Article  CAS  PubMed  Google Scholar 

  49. Folkman J (1995) Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat Med 1:27–31

    Article  CAS  PubMed  Google Scholar 

  50. Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by R01HL091456, R01ES020868, and R21CA175975 from National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ling-Zhi Liu or Bing-Hua Jiang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, LZ., Ding, M., Zheng, J.Z. et al. Tungsten Carbide-Cobalt Nanoparticles Induce Reactive Oxygen Species, AKT, ERK, AP-1, NF-κB, VEGF, and Angiogenesis. Biol Trace Elem Res 166, 57–65 (2015). https://doi.org/10.1007/s12011-015-0331-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-015-0331-6

Keywords

Navigation