Skip to main content
Log in

Effects of Cobalt Nanoparticles on Human T Cells In Vitro

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Limited information is available on the potential risk of degradation products of metal-on-metal bearings in joint arthroplasty. The aim of this study was to investigate the cytotoxicity and genotoxicity of orthopedic-related cobalt nanoparticles on human T cells in vitro. T cells were collected using magnetic CD3 microbeads and exposed to different concentrations of cobalt nanoparticles and cobalt chloride. Cytotoxicity was evaluated by methyl thiazolyl tetrazolium and lactate dehydrogenase release assay. Cobalt nanoparticles dissolution in culture medium was determined by inductively coupled plasma-mass spectrometry. To study the probable mechanism of cobalt nanoparticles effects on T cells, superoxide dismutase, catalase, and glutathione peroxidase level was measured. Cobalt nanoparticles and cobalt ions could inhibit cell viability and enhance lactate dehydrogenase release in a concentration- and time-dependent manner (P < 0.05). The levels of cobalt ion released from cobalt nanoparticles in the culture medium were less than 40% and increased with cobalt nanoparticles concentration. Cobalt nanoparticles could induce primary DNA damage in a concentration-dependent manner, and the DNA damage caused by cobalt nanoparticles was heavier than that caused by cobalt ions. Cobalt nanoparticles exposure could significantly decrease superoxide dismutase, catalase, and glutathione peroxidase activities at subtoxic concentrations (6 μM, <CC50). These findings suggested that cobalt nanoparticles could generate potential risks to the T cells of patients suffer from metal-on-metal total hip arthroplasty, and the inhibition of antioxidant capacity may play important role in cobalt nanoparticles effects on T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. MacDonald SJ, McCalden RW, Chess DG, Bourne RB, Rorabeck CH, Cleland D, Leung F (2003) Metal-on-metal versus polyethylene in hip arthroplasty: a randomized clinical trial. Clin Orthop Relat Res 406:282–296

    Article  PubMed  Google Scholar 

  2. Merritt K, Brown SA (1996) Distribution of cobalt chromium wear and corrosion products and biologic reactions. Clin Orthop Relat Res 329:S233–S243

    Article  PubMed  Google Scholar 

  3. Doorn PF, Campbell PA, Worrall J, Benya PD, McKellop HA, Amstutz HC (1988) Metal wear particle characterization from metal on metal total hip replacements: transmission electron microscopy study of periprosthetic tissues and isolated particles. J Biomed Mater Res 42:103–111

    Article  Google Scholar 

  4. Firkins PJ, Tipper JL, Saadatzadeh MR, Ingham E, Stone MH, Farrar R, Fisher J (2001) Quantitative analysis of wear and wear debris from metal-on-metal hip prostheses tested in a physiological hip joint simulator. Biomed Mater Eng 11:143–157

    PubMed  CAS  Google Scholar 

  5. Davies AP, Willert HG, Campbell PA, Learmonth ID, Case CP (2005) An unusual lymphocytic perivascular infiltration in tissues around contemporary metal-on-metal joint replacements. J Bone Joint Surg Am 87:18–27

    Article  PubMed  CAS  Google Scholar 

  6. Korovessis P, Petsinis G, Repanti M, Repantis T (2006) Metallosis after contemporary metal-on-metal total hip arthroplasty—five to nine-year follow-up. J Bone Joint Surg Am 88:1183–1191

    Article  PubMed  CAS  Google Scholar 

  7. Milosev I, Trebse R, Kovac S, Cor A, Pisot V (2006) Survivorship and retrieval analysis of Sikomet metal-on-metal total hip replacements at a mean of seven years. J Bone Joint Surg Am 88:1173–1182

    Article  PubMed  Google Scholar 

  8. Boardman DR, Middleton FR, Kavanagh TG (2006) A benign psoas mass following metal-on-metal resurfacing of the hip. J Bone Joint Surg Br 88:402–404

    Article  PubMed  CAS  Google Scholar 

  9. Campbell P, Shimmin A, Walter L, Solomon M (2008) Metal sensitivity as a cause of groin pain in metal-on-metal hip resurfacing. J Arthroplasty 23:1080–1085

    Article  PubMed  Google Scholar 

  10. Pandit H, Glyn-Jones S, McLardy-Smith P, Gundle R, Whitwell D, Gibbons CL, Ostlere S, Athanasou N, Gill HS, Murray DW (2008) Pseudotumours associated with metal-on-metal hip resurfacings. J Bone Joint Surg Br 90:847–851

    Article  PubMed  CAS  Google Scholar 

  11. Ladon D, Doherty A, Newson R, Turner J, Bhamra M, Case CP (2004) Changes in metal levels and chromosome aberrations in the peripheral blood of patients after metal-on-metal hip arthroplasty. J Arthroplasty 19:78–83

    Article  PubMed  Google Scholar 

  12. Milosev I, Remskar M (2008) In vivo production of nanosized metal wear debris formed by tribochemical reaction as confirmed by high-resolution TEM and XPS analyses. J Biomed Mater Res A 91:1100–1110

    Google Scholar 

  13. Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliver Rev 60:1252–1265

    Article  CAS  Google Scholar 

  14. Lu AH, Salabas EL, Schüth F (2007) Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed 46:1222–1244

    Article  CAS  Google Scholar 

  15. Kwon YM, Xia Z, Glyn-Jones S, Beard D, Gill HS, Murray DW (2009) Dose-dependent cytotoxicity of clinically relevant cobalt nanoparticles and ions on macrophages in vitro. Biomed Mater 4:025018

    Article  PubMed  Google Scholar 

  16. Colognato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L (2008) Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23:377–382

    Article  PubMed  CAS  Google Scholar 

  17. Gautam N, Das S, Mahapatra SK, Chakraborty SP, Kundu PK, Roy S (2010) Age associated oxidative damage in lymphocytes. Oxid Med Cell Longev 3:275–282

    Article  PubMed  Google Scholar 

  18. Ponti J, Sabbioni E, Munaro B, Broggi F, Marmorato P, Franchini F, Colognato R, Rossi F (2009) Genotoxicity and morphological transformation induced by cobalt nanoparticles and cobalt chloride: an in vitro study in Balb/3T3 mouse fibroblasts. Mutagenesis 24:439–445

    Article  PubMed  CAS  Google Scholar 

  19. Colgnato R, Bonelli A, Ponti J, Farina M, Bergamaschi E, Sabbioni E, Migliore L (2008) Comparative genotoxicity of cobalt nanoparticles and ions on human peripheral leukocytes in vitro. Mutagenesis 23:377–382

    Article  Google Scholar 

  20. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191

    Article  PubMed  CAS  Google Scholar 

  21. Konca K, Lankoff A, Banasik A, Lisowska H, Kuszewski T, Gozdz S, Koza Z, Wojcik A (2003) A cross-platform public domain PC image-analysis program for the comet assay. Mutat Res 534:15–20

    PubMed  CAS  Google Scholar 

  22. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  PubMed  CAS  Google Scholar 

  23. Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  24. Rotruck JT, Pope A, Ganther HE, Swanson AB (1973) Selenium: biochemical roles as component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  25. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–267

    PubMed  CAS  Google Scholar 

  26. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/Comet assay: guidelines for in vitro genetic toxicology testing. Environ Mol Mutagen 35:206–221

    Article  PubMed  CAS  Google Scholar 

  27. Papageorgiou I, Brown C, Schins R, Singh S, Newson R, Davis S, Fish J, Ingham E, Case CP (2007) The effect of nano- and micron-sized particles of cobalt–chromium alloy on human fibroblasts in vitro. Biomaterials 28:2946–2958

    Article  PubMed  CAS  Google Scholar 

  28. Saeedi Saravi SS, Karami S, Karami B, Shokrzadeh M (2009) Toxic effects of cobalt chloride on hematological factors of common carp. Bio Trace Ele Res 132:144–152

    Article  CAS  Google Scholar 

  29. Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    Article  PubMed  CAS  Google Scholar 

  30. Papis E, Gornati R, Prati M, Ponti J, Sabbioni E, Bernardini G (2007) Gene expression in nanotoxicology research: analysis by differential display in BALB3T3 fibroblasts exposed to cobalt particles and ions. Toxicol Lett 170:185–192

    Article  PubMed  CAS  Google Scholar 

  31. Lison D, De Boeck M, Verougstraete V, Kirsch-Volders M (2001) Update on the genotoxicity and carcinogenicity of cobalt compounds. Occup Environ Med 58:619–625

    Article  PubMed  CAS  Google Scholar 

  32. Petit A, Mwale F, Tkaczyk C, Antoniou J, Zukor DJ, Huk OL (2005) Induction of protein oxidation by cobalt and chromium ions in human U937 macrophages. Biomaterials 26:4416–4422

    Article  PubMed  CAS  Google Scholar 

  33. Hartwig A, Asmuss M, Ehleben I, Herzer U, Kostelac D, Pelzer A, Schwerdtle T, Burkle A (2002) Interference by toxic metal ions with DNA repair processes and cell cycle control: molecular mechanisms. Environ Health Perspect 110:797–799

    Article  PubMed  CAS  Google Scholar 

  34. Papis E, Rossi F, Raspanti M, Dalle-Donne I, Colombo G, Milzani A, Bernardini G, Gornati R (2009) Engineered cobalt oxide nanoparticles readily enter cells. Toxicol Lett 189:253–259

    Article  PubMed  CAS  Google Scholar 

  35. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminatants. Toxicol Lett 168:58–74

    Article  PubMed  CAS  Google Scholar 

  36. Park EJ, Choi J, Park Y, Park K (2008) Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology 1–2:90–100

    Article  Google Scholar 

  37. Simko M, Gazso A, Fiedeler U, Nentwich M (2011) Nanoparticles, free radicals and oxidative stress. NanoTrust Dossiers 12:1–3

    Google Scholar 

  38. Granchi D, Savarino L, Ciapetti G, Cenni E, Rotini R, Mieti M, Baldini N, Giunti A (2003) Immunological changes in patients with primary osteoarthritis of the hip after total joint replacement. J Bone Joint Surg Br 85:758–764

    PubMed  Google Scholar 

  39. Hart AJ, Hester T, Sinclair K, Powell JJ, Goodship AE, Pele L, Fersht NL, Skinner J (2006) The association between metal ions from hip resurfacing and reduced T-cell counts. J Bone Joint Surg Br 88:449–454

    Article  PubMed  CAS  Google Scholar 

  40. Hart AJ, Skinner JA, Winship P, Faria N, Kulinskaya E, Webster D, Muirhead-Allwood S, Aldam CH, Anwar H, Powell JJ (2008) Circulating levels of cobalt and chromium from metal-on-metal hip replacement are associated with CD8+ T-cell lymphopenia. J Bone Joint Surg Br 91:835–842

    Google Scholar 

  41. IARC (2006) IARC monographs on the evaluation of carcinogenic risks to humans: cobalt in hard metals and cobalt sulfate, gallium arsenide, indium phosphide and vanadium pentoxide. IARC Monogr Eval Carcinog Risks Hum 86:1–294

    Google Scholar 

Download references

Acknowledgement

This study was funded by the National Natural Science Foundation of China (No. 81171743).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huilin Yang.

Additional information

Haitao Jiang and Fan Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, H., Liu, F., Yang, H. et al. Effects of Cobalt Nanoparticles on Human T Cells In Vitro. Biol Trace Elem Res 146, 23–29 (2012). https://doi.org/10.1007/s12011-011-9221-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9221-8

Keywords

Navigation