Skip to main content
Log in

Assessing the Tolerance of Castor Bean to Cd and Pb for Phytoremediation Purposes

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

This study evaluated Cd and Pb accumulation by castor bean (Ricinus communis cv. Guarany) plants grown in nutrient solution, aiming to assess the plant’s ability and tolerance to grow in Cd- and Pb-contaminated solutions for phytoremediation purposes. The plants were grown in individual pots containing Hoagland and Arnon’s nutrient solution with increasing concentrations of Cd and Pb. The production of root and shoot dry matter and their contents of Cd, Pb, Ca, Mg, Cu, Fe, Mn, and Zn were evaluated in order to calculate the translocation and bioaccumulation factors, as well as toxicity of Cd and Pb. Cadmium caused severe symptoms of phytotoxicity in the plant’s root and shoot, but no adverse effect was observed for Pb. Castor bean is an appropriate plant to be used as indicator plant for Cd and tolerante for Pb in contaminated solution and it can be potentially used for phytoremediation of contaminated areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. He ZL, Yang XE, Stoffela PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  PubMed  CAS  Google Scholar 

  2. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants, 3rd edn. CRC Press, Boca Raton

    Google Scholar 

  3. ATSDR (2007) CERCLA Priority List of Hazardous Substances, Agency for Toxic Substances and Disease Control [Online WWW], available URL: http://www.atsdr.cdc.gov/cercla/07list.html. Accessed June 2011

  4. Guilherme LRG, Marques JJ, Pierangeli MAP, Zuliani DQ, Campos ML, Marchi G (2005) Elementos-traço em solos e sistemas aquáticos. Tópicos em Ciência do Solo, Viçosa: Soc Bras Ci Solo 4:345–390

    Google Scholar 

  5. Raskin I, Kumar PBAN, Dushenkov S, Salt DE (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290

    Article  CAS  Google Scholar 

  6. Dahmani-Muller H, Oort FV, Gélie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109:231–238

    Article  PubMed  CAS  Google Scholar 

  7. Baldwin PR, Butcher DJ (2007) Phytoremediation of arsenic by two hyperaccumulators in a hydroponic. Microchem J 85:297–300

    Article  CAS  Google Scholar 

  8. Nascimento CWA, Xing B (2006) Phytoextraction: a review on enhanced metal availability and plant accumulation. Sci Agric 63:299–311

    Article  Google Scholar 

  9. McBride MB (1994) Environmental chemistry of soils. University Press, New York

    Google Scholar 

  10. An YJ (2006) Assessment of comparative toxicities of lead and copper using plant assay. Chemosphere 62:1359–1365

    Article  PubMed  CAS  Google Scholar 

  11. Deng H, Ye ZH, Wong MH (2006) Lead and zinc accumulation and tolerance in populations of six wetland plants. Environ Pollut 141:69–80

    Article  PubMed  CAS  Google Scholar 

  12. Liu J, Li K, Xu J, Zhang Z, Ma T, Lu X, Yang J, Zhu Q (2003) Lead toxicity, uptake, and translocation in different rice cultivars. Plant Sci 165:793–802

    Article  CAS  Google Scholar 

  13. Liu J, Qian M, Cai G, Yang J, Zhu Q (2007) Uptake and translocation of Cd in different rice cultivars and the relation with Cd accumulation in rice grain. J Hazard Mater 143:443–447

    Article  PubMed  CAS  Google Scholar 

  14. Niu Z, Sun L, Sun T, Li Y, Wang H (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. J Environ Sci 19:961–967

    Article  CAS  Google Scholar 

  15. Prasad MNV (1995) Cadmium toxicity and tolerance in vascular plants. Environ Exp Botan 35:525–545

    Article  CAS  Google Scholar 

  16. Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  17. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  18. Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  PubMed  CAS  Google Scholar 

  19. Tanhan P, Kruatrachue M, Pokethitiyook P, Chaiyarat R (2007) Uptake and accumulation of cadmium, lead and zinc by siam weed [Chromolaena odorata (L.) King and Robinson]. Chemosphere 68:323–329

    Article  PubMed  CAS  Google Scholar 

  20. López-Millán AF, Sagardoy R, Solanas M, Abadía A, Abadía J (2009) Cadmium toxicity in tomato (Lycopersicon esculentum) plants grown in hydroponics. Environ Exp Botan 65:376–385

    Article  Google Scholar 

  21. Melo EEC, Costa ETS, Guilherme LRG, Faquin V, Nascimento CWA (2009) Accumulation of arsenic and nutrients by castor bean plants gown on an As-enriched nutrient solution. J Hazard Mater 168:479–483

    Article  PubMed  CAS  Google Scholar 

  22. Oliveira LB, Araujo MSM, Rosa LP, Barata M, La Rovere EL (2008) Analysis of the sustainability of using wastes in the Brazilian power industry. Renew Sustain Energy Rev 12:883–890

    Article  Google Scholar 

  23. Lu XY, He CQ (2005) Tolerance, uptake and accumulation of cadmium by Ricinus communis L. J Agro-Environ Sci 24:674–677

    CAS  Google Scholar 

  24. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. California Agricultural Experiment Station, Circular, Berkeley, p 347

    Google Scholar 

  25. Gustaffson JP (2007) Visual Minteq, ver.2.53, Kungliga Tekniska högskolgn [Royal Institute of Technology], Department of Land and Water Resources Engineering, Stockholm [Online WWW], available URL: http://www.lwr.kth.se/English/OurSoftware/vminteq/. Accessed February 2011

  26. Empresa Brasileira de Pesquisa Agropecuária – EMBRAPA (1999) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa Comunicação para Transferência de Tecnologia, Brasília

    Google Scholar 

  27. Wei C, Chen T (2006) Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere 63:1048–1053

    Article  PubMed  CAS  Google Scholar 

  28. Yoon J, Cao X, Zhou Q, Ma LQ (2006) Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Sci Total Environ 368:456–464

    Article  PubMed  CAS  Google Scholar 

  29. January MC, Cutright TJ, Keulen HV, Wei R (2008) Hydroponic phytoremediation of Cd, Cr, Ni, As, and Fe: Can Helianthus annuus hyperaccumulate multiple heavy metals? Chemosphere 70:531–537

    Article  PubMed  CAS  Google Scholar 

  30. Sun Y, Zhou Q, Diao C, Liu W, An J, Xu Z, Wang L (2009) Joint effects of arsenic and cadmium on plant growth and metal bioaccumulation: A potential Cd-hyperaccumulator and As-excluder Bidens pilosa L. J Hazard Mater 165:1023–1028

    Article  PubMed  CAS  Google Scholar 

  31. An YJ (2004) Soil ecotoxicity assessment using cadmium sensitive plants. Environ Pollut 127:21–26

    Article  PubMed  CAS  Google Scholar 

  32. Sun Y, Zhou Q, Diao C (2008) Effects of cadmium and arsenic on growth and metal accumulation of Cd-hyperaccumulator Solanum nigrum L. Bioresour Technol 99:1103–1110

    Article  PubMed  CAS  Google Scholar 

  33. Ghosh M, Singh SP (2005) A comparative study of cadmium phytoextraction by accumulator and weed species. Environ Pollut 133:365–371

    Article  PubMed  CAS  Google Scholar 

  34. Ferreira DF (2009) Sisvar 5.1, Programa de Análises Estatísticas [Online WWW], available URL: http://www.dex.ufla.br/∼danielff/softwares.htm. Accessed February 2011

  35. Luo C, Shen Z, Lou L, Li X (2006) EDDS and EDTA-enhanced phytoextraction of metals from artificially contaminated soil and residual effects of chelant compounds. Environ Pollut 144:862–871

    Article  PubMed  CAS  Google Scholar 

  36. Cutright T, Gunda N, Kurt F (2010) Simultaneous hyperaccumulation of multiple heavy metals by Helianthus annuus grown in a contaminated sandy-loam soil. Int J Phytoremediation 12:562–573

    Article  PubMed  CAS  Google Scholar 

  37. Megateli S, Semsari S, Couderchet M (2009) Toxicity and removal of heavy metals (cadmium, copper, and zinc) by Lemna gibba. Ecotoxicol Environ Saf 72:1774–1780

    Article  PubMed  CAS  Google Scholar 

  38. Nyquist J, Greger M (2007) Uptake of Zn, Cu, and Cd in metal loaded Elodea canadensis. Environ Exp Botan 60:219–226

    Article  CAS  Google Scholar 

  39. Seth CS, Chaturvedi PK, Misra V (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotoxicol Environ Saf 71:76–85

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

To CNPq, CAPES/PNPD and FAPEMIG for granting scholarships to the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enio Tarso de Souza Costa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Souza Costa, E.T., Guilherme, L.R.G., de Melo, É.E.C. et al. Assessing the Tolerance of Castor Bean to Cd and Pb for Phytoremediation Purposes. Biol Trace Elem Res 145, 93–100 (2012). https://doi.org/10.1007/s12011-011-9164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-011-9164-0

Keywords

Navigation