Skip to main content
Log in

The Interaction of Chromium(VI) with Urease in Solution

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

The interaction between K2Cr2O7 and urease was investigated using fluorescence, UV-vis absorption, and circular dichroism (CD) spectroscopy. The experimental results showed that the fluorescence quenching of urease by K2Cr2O7 was a result of the formation of K2Cr2O7–urease complex. The apparent binding constant K A between K2Cr2O7 and urease at 295, 302, and 309 K were obtained to be 2.14 × 104, 1.96 × 104, and 1.92 × 104 L mol−1, respectively. The thermodynamic parameters, Δ and Δ were estimated to be −5.90 kJ mol−1, 43.67 J mol−1 K−1 according to the Van’t Hoff equation. The electrostatic interaction played a major role in stabilizing the complex. The distance r between donor (urease) and acceptor (K2Cr2O7) was 5.08 nm. The effect of K2Cr2O7 on the conformation of urease was analyzed using UV-vis absorption, CD, synchronous fluorescence spectroscopy, and three-dimensional fluorescence spectra, the environment around Trp and Tyr residues were altered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. James BR, Bartlett RJ (1984) Plant–soil interactions of chromium. J Environ Qual 13:67–70

    Article  CAS  Google Scholar 

  2. Krishna KR, Philip L (2005) Bioremediation of Cr (VI) in contaminated soils. J Hazard Mater 121:109–117

    Article  PubMed  CAS  Google Scholar 

  3. Chai LY, Huang SH, Yang ZH et al (2009) Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. J Hazard Mater 167:516–522

    Article  PubMed  CAS  Google Scholar 

  4. Doelman P, Haanstra L (1986) Effects of heavy metals on urease in soil. Biol Fertil Soils 2:213–218

    Article  Google Scholar 

  5. Dixon NE, Gazzola C, Blakeley RL et al (1975) Jack bean urease (EC 3.5.1.5), a metalloenzyme. A simple biological role for nickel? J Am Chem Soc 97:4131–4133

    Article  PubMed  CAS  Google Scholar 

  6. Wittekind E, Werner M, Reinicke A et al (1996) A microtiter-plate urease inhibition assay-sensitive rapid and cost-effective screening for heavy metals in water. Environ Technol 17:597–603

    Article  Google Scholar 

  7. Samborska A, Stepniewska Z, Stepniewski W (2004) Influence of different oxidation states of chromium (VI, III) on soil urease activity. Geoderma 122:317–322

    Article  CAS  Google Scholar 

  8. Wyszkowska J (2002) Soil contamination by chromium and its enzymatic activity and yielding. Pol J Environ Stud 11:79–84

    CAS  Google Scholar 

  9. Zaborska W, Krajewska B, Olech Z (2004) Heavy metal ions inhibition of jack bean urease: potential for rapid contaminant probing. J Enzym Inhib Med Chem 19:65–69

    Article  CAS  Google Scholar 

  10. Reddy KRC, Kayastha AM (2006) Boric acid and boronic acids inhibition of pigeonpea urease. J Enzym Inhib Med Chem 21:467–470

    Article  CAS  Google Scholar 

  11. Zhang Y, Qi ZD, Zheng D et al (2009) Interactions of chromium (III) and chromium (VI) with bovine serum albumin studied by UV spectroscopy, circular dichroism, and fluorimetry. Biol Trace Elem Res 130:172–184

    Article  PubMed  CAS  Google Scholar 

  12. Lakowicz JR (1983) Principles of fluorescence spectroscopy. Plenum Press, New York

    Google Scholar 

  13. Steiner RF, Weinry L (1971) Excited states of protein and nucleic acid. Plenum Press, New York

    Google Scholar 

  14. Lakowicz JR, Weber G (1973) Quenching of fluorescence byoxygen: probe for structural fluctuationsin macromolecules. Biochemistry 12:4161–4417

    Article  PubMed  CAS  Google Scholar 

  15. Mandal P, Ganguly T (2009) Fluorescence spectroscopic characterization of the interaction of human adult hemoglobin and two isatins, 1-methylisatin and 1-phrnylisatin: A comparative study. J Phys Chem B 113:14904–14913

    Article  PubMed  CAS  Google Scholar 

  16. Lakowicz JR (1999) Principles of fluorescence spectroscopy, 2nd edn. Plenum Press, New York

    Google Scholar 

  17. Sharma A, Schulman SG (1999) Introduction to fluorescence spectroscopy. Wiley, New York

    Google Scholar 

  18. Bi SY, Song DQ, Ding L et al (2005) Molecular spectroscopic study on the interaction of tetracyclines with serum albumins. Spectrochimica Acta Part A 61:629–636

    Article  Google Scholar 

  19. Wang ZM, Tan XJ, Chen DH et al (2009) Study on the binding behavior of lysozyme with cephalosporin analogues by fluorescence spectroscopy. J Fluoresce 19:801–808

    Article  CAS  Google Scholar 

  20. Ross PD, Subramanian S (1981) Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry 20:3096–3102

    Article  PubMed  CAS  Google Scholar 

  21. Takishima K, Suga T, Mamiya G (1988) The structure of jack bean urease. Eur J Biochem 175:151–165

    Article  PubMed  CAS  Google Scholar 

  22. Sklar LA, Hudson BS, Simoni RD (1977) Conjugate polyene fatty acids as fluorescent membrane probes. Biochemistry 16:5100–5106

    Article  PubMed  CAS  Google Scholar 

  23. Abou-Zied OK, Al-Shihi OIK (2008) Characterization of subdomain IIA binding site of human serum albumin in its native, unfolded, and refolded states using small molecular probes. J Am Chem Soc 130:10793–10801

    Article  PubMed  CAS  Google Scholar 

  24. Valeur B, Brochon JC (1999) New trends in fluorescence spectroscopy, 6th edn. Berlin, Springer Press

    Google Scholar 

  25. Vial S, Ghanbajab J, Forano C (2006) Precipitation of Zn2Al LDH by urease enzyme. Chem Commun 3:290–292

    Google Scholar 

  26. Lippard SJ (1995) At last—the crystal structure of urease. Science 268:996–997

    CAS  Google Scholar 

  27. Zhang HM, Wang YQ, Jiang ML (2009) Fluorimetric study of interaction of C.I. Solvent Red 24 with haemoglobin. Dyes and Pigments 82:156–163

    Article  CAS  Google Scholar 

  28. Mamiya G, Takishima K, Masakuni M, Kayummi T, Ogawa K (1987) Complete amino acid sequence of Jack Bean urease. J Protein Chem 6:55–60

    Article  CAS  Google Scholar 

  29. Ahmad B, Parveen S, Khan RH (2006) Effect of albumin conformation on the binding of ciprofloxacin to human serum albumin: a novel approach directly assigning binding site. Biomacromolecules 7:1350–1356

    Article  PubMed  CAS  Google Scholar 

  30. Vekshin NL (1996) Division of the tyrosine and tryptophan components of fluorescence using synchronous scanning method. Biofizika 41:1176–1182

    PubMed  CAS  Google Scholar 

  31. Abert WC, Gregory WM, Allan GS (1993) The binding interaction of coomassie blue with protein. Anal Biochem 213:407–413

    Article  Google Scholar 

Download references

Acknowledgments

The Fund of Excellent Innovation Team of Jiangsu Provincial Department of Education (No. 2009-23), the Natural Science Foundation of Education Department of Jiangsu Province (Grant No. 07KJA18017); the Educational Bureau (Grant No.09KJD150007), Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection (JLCBE09016), the Jiangsu Fundament of “Qilan Project” and “333 Project”, and the Scientific Foundation of Yancheng Teachers University (06YSYJB0205) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gen-Cheng Zhang or Yan-Qing Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, HM., Zhang, GC. & Wang, YQ. The Interaction of Chromium(VI) with Urease in Solution. Biol Trace Elem Res 141, 53–64 (2011). https://doi.org/10.1007/s12011-010-8718-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-010-8718-x

Keywords

Navigation