Skip to main content
Log in

Chromium Status and Glucose Tolerance in Saudi Men With and Without Coronary Artery Disease

  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Chromium deficiency is associated with impaired glucose tolerance (IGT) and dyslipidemia. Hence, the objective of the current study was to investigate chromium status among Saudi men with and without established cardiovascular disease (CVD) and its relationship to glucose tolerance, lipid profile and other established CVD risk factors. We measured serum and urine chromium concentrations, fasted lipid profile, plasma glucose, and serum lipid peroxide in 130 Saudi men with an established history of myocardial infarction and 130 age-matched controls without established CVD. Patients with established CVD had higher serum triglycerides (p < 0.05) and plasma glucose (p < 0.0001) and lower serum and urinary chromium concentrations (p < 0.0001) than controls. Serum chromium was inversely correlated with plasma glucose among cases and controls (r = −0.189, p < 0.05 and r = −0.354, p < 0.00001, respectively). Plasma glucose (OR 1.127, CI 1.0–1.269, p < 0.05), serum chromium (OR 0.99, CI 0.985–0.995, p < 0.0001), and urinary chromium (OR 0.988, CI 0.981–0.995, p < 0.001) were independently associated with the presence of established coronary disease applying this model. While chromium metabolism appears to be altered in individuals with CVD, it is unclear whether chromium supplementation would be effective in CVD prevention among patients with IGT. This would need to be tested in long-term outcome trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Anderson RA. Recent advances in the clinical and biochemical effects of chromium deficiency. In Prasad AS (ed): “Essential and toxic trace elements in human health and disease.” New York: Wiley Liss, pp 221–234, 1993.

    Google Scholar 

  2. Anderson RA. Chromiums, glucose tolerance, diabetes and lipid metabolism. J Adv Med 1995;8:37–49.

    CAS  Google Scholar 

  3. Anderson R. Essentiality of chromium in humans. Sci Total Environ 1989;86:75.

    Article  CAS  PubMed  Google Scholar 

  4. Davies S, Howard JM, Hunnisett A, Howard M: Age-related decreases in chromium levels in 51,665 hair, sweat, and serum samples from 40,872 patients--mplications for the prevention of cardiovascular disease and type II diabetes mellitus. Metabolism 1997;46:469-473.

    Article  CAS  PubMed  Google Scholar 

  5. Ekmekcioglu C, Prohaska C, Pomazal K, Steffan I, Schernthaner G, Marktl W: Concentrations of seven trace elements in different hematological matrices in patients with type 2 diabetes as compared to healthy controls. Biol Trace Elem Res 20001;79:205–219.

    Article  Google Scholar 

  6. Aharoni A, Tesler B, Paltieli Y, et al. Hair chromium content of women with gestational diabetes compared with nondiabetic pregnant women. Am J Clin Nutr 1992;55:104–107.

    CAS  PubMed  Google Scholar 

  7. Rajpathak S, Rimm E B, Li T, et al. Lower toenail chromium in men with diabetes and cardiovascular disease compared with healthy men. Diabetes Care 2004;27:2211–2216.

    Article  CAS  PubMed  Google Scholar 

  8. Mita Y, Ishihara K, Fukuchi Y, Fukuya Y, Yasumoto K: Supplementation with chromium picolinate recovers renal Cr concentration and improves carbohydrate metabolism and renal function in type 2 diabetic mice. Biol Trace Elem Res 2005;105:229–248.

    Article  CAS  PubMed  Google Scholar 

  9. Assmann G, Carmena R, Cullen P, et al. Coronary heart disease: reducing the risk a worldwide view. Circulation 1999;100:1930–1938.

    CAS  PubMed  Google Scholar 

  10. Hurst W. The Heart Arteries and Veins. 10th ed. New York, NY: McGraw-Hill; 2002.

    Google Scholar 

  11. Simonoff M: Chromium deficiency and cardiovascular risk. Cardiovasc Res 1984;18(10):591–596

    Article  CAS  PubMed  Google Scholar 

  12. Bahijri SM, Mufti AM. Beneficial effects of chromium in people with type 2 diabetes, and urinary chromium response to glucose load as a possible indicator of status. Biol Trace Elem Res 2002;85(2):97–109.

    Article  CAS  PubMed  Google Scholar 

  13. Alissa EM, Bahijri S, Ahmed W, et al. Trace element status in Saudi patients with established atherosclerosis. J Trace Elem Med Biol. 2006;20(2):105–14.

    Article  CAS  PubMed  Google Scholar 

  14. Mahdi GS. Chromium deficiency might contribute to insulin resistance, type 2 diabetes mellitus, dyslipidaemia, and atherosclerosis. Diabet Med 1996;13:389–391.

    Article  CAS  PubMed  Google Scholar 

  15. Gary P: Cardiovascular disease in diabetes. In Pickup’s textbook of diabetes. Oxford, U.K. Blackwell Science, 1997, p. 57.51–20

    Google Scholar 

  16. Rimm EGE, Giovannucci E, Ascherio A, et al. Toenail chromium levels and risk of coronary heart disease among normal and overweight men, AHA-Epidemiology Meeting Abstract, 2002

  17. Guallar EJF, van’t Veer P, Bode P, et al. Low toenail chromium and increased risk of myocardial infarction. Am J Epidemiol. 2005;162(2):157–64

    Article  PubMed  Google Scholar 

  18. Anderson RA. Chromium, glucose intolerance and diabetes. J Am Coll Nutr 1998;17:548–555

    CAS  PubMed  Google Scholar 

  19. Anderson RA, Roussel AM, Zouari N, et al. Potential antioxidant effects of zinc and chromium supplementation in people with type 2 diabetes mellitus. J Am Coll Nutr 2001;20:212–218.

    CAS  PubMed  Google Scholar 

  20. Lai MH. Antioxidant effects and insulin resistance improvement of chromium combined with vitamin C and E supplementation for type 2 diabetes mellitus. J Clin Biochem Nutr 2008;43:191–8

    Article  PubMed  Google Scholar 

  21. Hennekens C, Albert C, Godfried S, et al. Adjunctive drug therapy of acute myocardial infarction–evidence from clinical trials. N Engl J Med. 1996;335:1660–7

    Article  CAS  PubMed  Google Scholar 

  22. World Health Organization. Obesity, preventing and managing the global epidemic: report of a WHO consultation on obesity. Geneva, Switzerland: World Health Organization; 1997

    Google Scholar 

  23. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, And Treatment of High Blood Cholesterol In Adults (Adult Treatment Panel III). 2001;285(19):2486–97.

  24. Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications, Part 1: diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998;15:539–53.

    Article  CAS  PubMed  Google Scholar 

  25. Trinder P. Determination of blood glucose using 4-aminophenazone. J Clin Path 1969;22:246

    Article  CAS  PubMed  Google Scholar 

  26. Allain C, Poon L, Chan C, et al. Enzymatic determination of total serum cholesterol. Clin Chem 1974;20:470–5

    CAS  PubMed  Google Scholar 

  27. Fossati P, Prencipe L. Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide. Clin Chem. 1982;28(10):2077–80

    CAS  PubMed  Google Scholar 

  28. Warnick G, Mayfield C, Benderson J, et al. HDL cholesterol quantitation by phosphotungstate-Mg2+ and by dextran sulfate-Mn2+-polyethylene glycol precipitation, both with enzymic cholesterol assay compared with the lipid research method. Am J Clin Pathol. 1982;78(5):718–23

    CAS  PubMed  Google Scholar 

  29. Friedewald W, Levy R, Fredrickson D. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem. 1972;18(6):499–502

    CAS  PubMed  Google Scholar 

  30. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxidation in animal tissues by thiobarbituric acid reaction. Anal Biochem 1979;95:351–8

    Article  CAS  PubMed  Google Scholar 

  31. Kayne F, Kumar G, Laboda H, et al. Atomic absorption spectrophotometry of chromium in serum and urine with a modified Perkin-Elmer603 atomic absorption spectrophotometer. Clin Chem. 1978;24(12):2151–4

    CAS  PubMed  Google Scholar 

  32. Veillon C. Trace element analysis of biological samples. Anal Chem 1986;58:851A–8A

    Article  CAS  PubMed  Google Scholar 

  33. Veillon C, Patterson K, Bryden N. Determination of chromium in human serum by electro-thermal atomic absorption spectrometry. Anal Chim Acta 1984;164:67–86

    Article  CAS  Google Scholar 

  34. Al-Nozha M, Almaatouq M, Almazrou Y, et al. Diabetes mellitus in Saudi Arabia. SMJ 2004;25(11):1603–10.

    Google Scholar 

  35. Anderson RA, Bryden NA, Polansky MM, et al. Exercise effects on chromium excretion of trained and untrained men consuming a constant diet J Appl Physiol 1988;64:249–52.

    Article  CAS  PubMed  Google Scholar 

  36. Stupar J, Vrtovec M, Dolinsek F. Longitudinal hair chromium profiles of elderly subjects with normal glucose tolerance and type 2 diabetes mellitus. Metabolism 2007;56(1):94–104.

    Article  CAS  PubMed  Google Scholar 

  37. Anderson RA, Kozlovsky AS. Chromium intake, absorption and excretion of subjects consuming self- selected diets. Am J Clin Nutr 1985;41:1177–1183.

    CAS  PubMed  Google Scholar 

  38. Schrauzer GN, Shrestha KP, Molenaar TB, Mead S. Effects of chromium supplementation on food energy utilization and trace element composition in liver and heart of glucose exposed young mice. Biol Trace Elem Res 1986;9(2):79–87

    Article  CAS  Google Scholar 

  39. Anderson RA, Brydon NA, Polansky MM. Type 2 diabetes and chromium. In: Neve J, Chappuis P, Lamand M, (Eds,). Therapeutic uses of trace elements. New York: Plenum, 1996. p. 161–5

    Google Scholar 

  40. Chinyere N, Opara U, Henrieta1 E, et al. Serum and Urine Levels of Chromium and Magnesium in Type 2 Diabetics in Calabar, Nigeria. Mal J Nutr 11(2):133–142, 2005

    Google Scholar 

  41. Anderson R. Exercise effects on trace element metabolism. Trace Element in Man and Animal 10, In: Rousssel A.M., Anderson R.A., Favier A.E., (eds.) Kluwer Academic/Plenum Publisher. New York, 393, 2000.

    Google Scholar 

  42. Roussel A, Zouari N. Antioxidant effect of zinc and chromium in people with type 2 diabetes mellitus. J Am Coll Nutr 1998;17:504.

    Google Scholar 

  43. Panel on Micronutrients, Food and Nutrition Board, National Academy of Sciences. Dietary reference intakes for vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc.Washington, DC: National Academy Press, 2001.

    Google Scholar 

  44. Abraham AS, Brooks BA, Eylath U. Chromium and cholesterol-induced atherosclerosis in rabbits. Ann Nutr Metab 1991;35:203–207

    Article  CAS  PubMed  Google Scholar 

  45. Bunker VW, Lawson MS, Delves HT, et al. The uptake and excretion of chromium by the elderly. Am J Clin Nutr 1984;39:797-802.

    CAS  PubMed  Google Scholar 

  46. Ding W, Chai Z, Duan P, et al. Serum and urine chromium concentrations in elderly diabetics. Biol. Trace Elem. Res 1998;63(3):231–237.

    Article  CAS  PubMed  Google Scholar 

  47. Rubin MA, Miller JP, Ryan AS, et al. Acute and chronic resistive exercise increase urinary chromium excretion in men as measured with an enriched chromium stable isotope. J Nutr 1998;128:73–8.

    CAS  PubMed  Google Scholar 

  48. Galan P, Viteri F, Bertais S, et al. Serum concentrations of beta caroteinoids, vitamin C and E, zinc and selenium are influenced by sex, age, diet, smoking status, alcohol consumption and corpulence in a general French adult population. Eur J Clin Nutr 2005;59(10):1181–90.

    Article  CAS  PubMed  Google Scholar 

  49. Gurson C, and Saner G. The effect of glucose loading on urinary excretion of chromium in normal adults in individuals from diabetic families and in diabetes. Am J Clin Nutr 1978;31:1158–61.

    CAS  PubMed  Google Scholar 

  50. Lukaski HC. Chromium as a supplement. Annu Rev Nutr 1999;19:279–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

Eman Mokbel Alissa was supported by a scholarship from the joint supervision program of the King AbdulAziz University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eman M. Alissa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alissa, E.M., Bahjri, S.M., Ahmed, W.H. et al. Chromium Status and Glucose Tolerance in Saudi Men With and Without Coronary Artery Disease. Biol Trace Elem Res 131, 215–228 (2009). https://doi.org/10.1007/s12011-009-8365-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-009-8365-2

Keywords

Navigation