Skip to main content
Log in

Kinetics, Thermodynamics, and Volatile Products of Camphorwood Pyrolysis in Inert Atmosphere

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The kinetics, thermodynamics, and volatile products of camphorwood pyrolysis were investigated via thermogravimetry coupled with Fourier transform infrared (FTIR) spectroscopy at multiple heating rates. The kinetic triplets and thermodynamic parameters were estimated via model free combined with the model-fitting approach. The results showed that the pyrolysis of camphorwood in the conversion rate range from 0 to 0.85 might be considered as one-step process. The mean value of the activation energy and pre-exponential factor was 192.63 kJ/mol and 2.38 × 1013 s−1, respectively. The pyrolysis process (0 ≤ α ≤ 0.85) can be described by the three-dimensional diffusion model g(α) = [(1−α)−1/3 – 1]2. Furthermore, the predicted curves of the conversion rate α showed good agreement with the experimental curves. The values of ΔH, ΔG, and ΔS varied little with α and remained positive. In addition, the major gas products released from the camphorwood waste pyrolysis were H2O, methane, CO2, CO, C=O, O–H, C–O–C, and NH3, whose concentration in the order from highest to lowest was C=O > CO2 > O–H > H2O > methane > NH3 > C–O–C > CO. The main conclusions in the present study can provide guidance for the design and optimization of industrial reactor and selection of target biofuels or chemical raw materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sundaram, V., Muthukumarappan, K., & Gent, S. (2017). Understanding the impacts of AFEX™ pretreatment and densification on the fast pyrolysis of corn stover, prairie cord grass, and switchgrass. Applied Biochemistry and Biotechnology, 181(3), 1060–1079.

    CAS  PubMed  Google Scholar 

  2. Hajer, M. A., & Pelzer, P. (2018). 2050—An energetic odyssey: Understanding ‘techniques of futuring’ in the transition towards renewable energy. Energy Research and Social Science, 44, 222–231.

    Google Scholar 

  3. Al-Hamamre, Z., Saidan, M., Hararah, M., Rawajfeh, K., Alkhasawneh, H. E., & Al-Shannag, M. (2017). Wastes and biomass materials as sustainable-renewable energy resources for Jordan. Renewable and Sustainable Energy Reviews, 67, 295–314.

    CAS  Google Scholar 

  4. Singer, S., Denruyter, J. P., & Yener, D. (2017). The energy report: 100% renewable energy by 2050. Tata Energy Research Institute India, 379–383.

  5. Toscano, G., Duca, D., Rossini, G., Mengarelli, C., & Pizzi, A. (2015). Identification of different woody biomass for energy purpose by means of soft independent modeling of class analogy applied to thermogravimetric analysis. Energy, 83, 351–357.

    Google Scholar 

  6. Johansson, L. S., Tullin, C., Leckner, B., & Sjövalla, P. (2003). Particle emissions from biomass combustion in small combustors. Biomass and Bioenergy, 25(4), 435–446.

    CAS  Google Scholar 

  7. Zhang, X., Chen, Q., Bradford, R., Sharifi, V., & Swithenbank, J. (2010). Experimental investigation and mathematical modelling of wood combustion in a moving grate boiler. Fuel Processing Technology, 91(11), 1491–1499.

    CAS  Google Scholar 

  8. Mensah, R. A., Jiang, L., Asante-Okyere, S., Xu, Q., & Jin, C. (2019). Comparative evaluation of the predictability of neural network methods on the flammability characteristics of extruded polystyrene from microscale combustion calorimetry. Journal of Thermal Analysis and Calorimetry, 138(5), 3055–3064.

    CAS  Google Scholar 

  9. Kalinoski, R. M., Flores, H. D., Thapa, S., & Tuegel, E. (2017). Pretreatment of hardwood and miscanthus with trametes versicolor for bioenergy conversion and densification strategies. Applied Biochemistry and Biotechnology, 183(4), 1401–1413.

    CAS  PubMed  Google Scholar 

  10. Samavi, M., Uprety, B. K., & Rakshit, S. (2019). Bioconversion of poplar wood hemicellulose prehydrolysate to microbial oil using cryptococcus curvatus. Applied Biochemistry and Biotechnology, 189(6), 626–637.

    CAS  PubMed  Google Scholar 

  11. Sitepu, I. R., Garay, L. A., Sestric, R., Levin, D., Block, D. E., German, J. B., & Boundy-Mills, K. L. (2014). Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnology Advances, 32(7), 1336–1360.

    CAS  PubMed  Google Scholar 

  12. Ding, Y., Zhang, W., Yu, L., & Lu, K. (2019). The accuracy and efficiency of GA and PSO optimization schemes on estimating reaction kinetic parameters of biomass pyrolysis. Energy, 176, 582–588.

    CAS  Google Scholar 

  13. Ding, Y., Ezekoye, O. A., Zhang, J., Wang, C., & Lu, S. (2018). The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel, 232, 147–153.

    CAS  Google Scholar 

  14. Fei, Y., Deng, S., Chen, P., Liu, Y., Wan, Y., Olson, A., et al. (2007). Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Applied Biochemistry and Biotechnology, 137(1–12), 957–970.

    Google Scholar 

  15. Ding, Y., Wang, C., Chaos, M., Chen, R., & Lu, S. (2016). Estimation of beech pyrolysis kinetic parameters by shuffled complex evolution., 200, 658–665.

  16. Ding, Y., Zhang, J., He, Q., Huang, B., & Mao, S. (2019). The application and validity of various reaction kinetic models on woody biomass pyrolysis. Energy, 179, 784–791.

    CAS  Google Scholar 

  17. Ding, Y., EO, A., Jiaqing, Z., Changjian, W., & Shouxiang, L. (2018). The effect of chemical reaction kinetic parameters on the bench-scale pyrolysis of lignocellulosic biomass. Fuel, 232, 147–153.

    CAS  Google Scholar 

  18. Ding, Y., Fukumoto, K., Ezekoye, O. A., Lu, S., Wang, C., & Li, C. (2020). Experimental and numerical simulation of multi-component combustion of typical charring material. Combustion and Flame, 211, 417–429.

    CAS  Google Scholar 

  19. Ding, Y., Huang, B., Li, K., Du, W., Lu, K., & Zhang, Y. (2020). Thermal interaction analysis of isolated hemicellulose and cellulose by kinetic parameters during biomass pyrolysis. Energy, 117010.

  20. Kumar, G., Dharmaraja, J., Arvindnarayan, S., Shoban, S., Bakonyi, P., Saratale, G. D., et al. (2019). A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio-derived lignocellulosic molecules into renewable fuels. Fuel, 251, 352–367.

    CAS  Google Scholar 

  21. Gao, X., Jiang, L., & Xu, Q. (2020). Experimental and theoretical study on thermal kinetics and reactive mechanism of nitrocellulose pyrolysis by traditional multi kinetics and modeling reconstruction. Journal of Hazardous Materials, 386, 121645.

    CAS  PubMed  Google Scholar 

  22. Zoltán, T., Tamás, V., János, S., Norbert, M., & Tibor, C. (2018). Kinetic identification of plastic waste pyrolysis on zeolite-based catalysts. Energy Conversion and Management, 173, 320–330.

    Google Scholar 

  23. Wei, Z., Zeng, G., Kosa, M., Huang, D., & Ragauskas, A. J. (2015). Pyrolysis oil-based lipid production as biodiesel feedstock by rhodococcus opacus. Applied Biochemistry and Biotechnology, 175(2), 1234–1246.

    CAS  PubMed  Google Scholar 

  24. Hassan, E. B. M., Steele, P. H., & Ingram, L. (2009). Characterization of fast pyrolysis bio-oils produced from pretreated pine wood. Applied Biochemistry and Biotechnology, 154(1–3), 3–13.

    Google Scholar 

  25. Feng-Wen, Y., Deng-Xiang, J., Yong, N., Yao, L., Cheng-Jie, H., & Jian-Bing, J. (2012). Study on the pyrolysis of cellulose for bio-oil with mesoporous molecular sieve catalysts. Applied Biochemistry and Biotechnology, 168(1), 174–182.

    Google Scholar 

  26. Mishra, G., Kumar, J., & Bhaskar, T. (2015). Kinetic studies on the pyrolysis of pinewood. Bioresource Technology, 182, 282–288.

    CAS  PubMed  Google Scholar 

  27. Ding, Y., Ezekoye, O. A., Lu, S., Wang, C., & Zhou, R. (2017). Comparative pyrolysis behaviors and reaction mechanisms of hardwood and softwood. Energy Conversion and Management, 132, 102–109.

    CAS  Google Scholar 

  28. Maia, A. A., & de Morais, L. C. (2016). Kinetic parameters of red pepper waste as biomass to solid biofuel. Bioresource Technology, 204, 157–163.

    CAS  PubMed  Google Scholar 

  29. Bach, Q. V., Trinh, T. N., Tran, K. Q., & Thi, N. B. D. (2017). Pyrolysis characteristics and kinetics of biomass torrefied in various atmospheres. Energy Conversion and Management, 141, 72–78.

    CAS  Google Scholar 

  30. Chen, Z., Hu, M., Zhu, X., Guo, D., Liu, S., Hu, Z., Xiao, B., Wang, J., & Laghari, M. (2015). Characteristics and kinetic study on pyrolysis of five lignocellulosic biomass via thermogravimetric analysis. Bioresource Technology, 192, 441–450.

    CAS  PubMed  Google Scholar 

  31. Ghadikolaei, S. S., Omrani, A., & Ehsani, M. (2017). Non-isothermal degradation kinetics of ethylene-vinyl acetate copolymer nanocomposite reinforced with modified bacterial cellulose nanofibers using advanced isoconversional and master plot analyses. Thermochimica Acta, 655, 87–93.

    CAS  Google Scholar 

  32. Mishra, R. K., & Mohanty, K. (2018). Pyrolysis kinetics and thermal behavior of waste sawdust biomass using thermogravimetric analysis. Bioresource Technology, 251, 63–74.

    CAS  PubMed  Google Scholar 

  33. Fanfan, X., Bo, W., Dan, Y., Junhui, H., Yingyun, Q., & Yuanyu, T. (2018). Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Conversion and Management.

  34. Ding, Y., Ezekoye, O. A., Lu, S., & Wang, C. (2016). Thermal degradation of beech wood with thermogravimetry/Fourier transform infrared analysis. Energy Conversion and Management, 120, 370–377.

    CAS  Google Scholar 

  35. Liang, F., Wang, R., Xiang, H., Yang, X., & Zhang, T. (2018). Investigating pyrolysis characteristics of moso bamboo through TG-FTIR and Py-GC/MS. Bioresource Technology, 256, 53–60.

    CAS  PubMed  Google Scholar 

  36. Cai, H., Zou, H., Liu, J., Xie, W., Kuo, J., Buyukada, M., & Evrendilek, F. (2018). Thermal degradations and processes of waste tea and tea leaves via TG-FTIR: Combustion performances, kinetics, thermodynamics, products and optimization. Bioresource Technology, 268, 715–725.

    CAS  PubMed  Google Scholar 

  37. Jiang, H., Wang, J., Wu, S., Wang, B., & Wang, Z. (2010). Pyrolysis kinetics of phenol–formaldehyde resin by non-isothermal thermogravimetry. Carbon, 48(2), 352–358.

    CAS  Google Scholar 

  38. Vlaev, L., Nedelchev, N., Gyurova, K., & Zagorcheva, M. (2008). A comparative study of non-isothermal kinetics of decomposition of calcium oxalate monohydrate. Journal of Analytical and Applied Pyrolysis, 81(2), 253–262.

    CAS  Google Scholar 

  39. Liqing, L., & Donghua, C. (2004). Application of iso-temperature method of multiple rate to kinetic analysis. Journal of Thermal Analysis and Calorimetry, 78(1), 283–293.

    CAS  Google Scholar 

  40. Kissinger, H. (1956). Variation of peak temperature with heating rate in differential thermal analysis. Journal of Research of the National Bureau of Standards, 57, 217–221.

    CAS  Google Scholar 

  41. Akahira, T., & Sunose, T. (1971). Method of determining activation deterioration constant of electrical insulating materials. Science and Technology, 16, 22–31.

    Google Scholar 

  42. Flynn, J. H., & Wall, L. A. (1966). A quick, direct method for the determination of activation energy from thermogravimetric data. Journal of Polymer Science Part C Polymer Letters, 4(5), 323–328.

    CAS  Google Scholar 

  43. Takeo, O. (1965). A new method of analyzing thermogravimetric data. Bulletin of the Chemical Society of Japan, 38, 1881–1886.

    Google Scholar 

  44. Coats, A. W., & Redfern, J. P. (1964). Kinetic parameters from thermogravimetric data. Nature, 201(4914), 68–69.

    CAS  Google Scholar 

  45. Chen, J., Liu, J., He, Y., Huang, L., Sun, S., Sun, J., Chang, K., Kuo, J., Huang, S., & Ning, X. (2017). Investigation of co-combustion characteristics of sewage sludge and coffee grounds mixtures using thermogravimetric analysis coupled to artificial neural networks modeling. Bioresource Technology, 225, 234–245.

    CAS  PubMed  Google Scholar 

  46. Tian, L., Shen, B., Xu, H., Li, F., Wang, Y., & Singh, S. (2016). Thermal behavior of waste tea pyrolysis by TG-FTIR analysis. Energy, 103, 533–542.

    CAS  Google Scholar 

  47. Vyazovkin, S. (2000). Computational aspects of kinetic analysis.: Part C. The ICTAC kinetics project — The light at the end of the tunnel? Thermochimica Acta, 355(1), 155–163.

    CAS  Google Scholar 

  48. Ahmad, M. S., Mehmood, M. A., Liu, C. G., Tawab, A., Bai, F. W., Sakdaronnarong, C., et al. (2018). Bioenergy potential of Wolffia arrhiza appraised through pyrolysis, kinetics, thermodynamics parameters and TG-FTIR-MS study of the evolved gases. Bioresource Technology, 253.

  49. Vlaev, L. T., Georgieva, V. G., & Genieva, S. D. (2007). Products and kinetics of non-isothermal decomposition of vanadium(IV) oxide compounds. Journal of Thermal Analysis and Calorimetry, 88(3), 805–812.

    CAS  Google Scholar 

  50. Zhang, J., Liu, J. Y., Evrendilek, F., Xie, W., & Buyukada, M. (2019). Kinetics, thermodynamics, gas evolution and empirical optimization of cattle manure combustion in air and oxy-fuel atmospheres. Applied Thermal Engineering, 149, 119–131.

    CAS  Google Scholar 

  51. Xu, Y., & Chen, B. (2013). Investigation of thermodynamic parameters in the pyrolysis conversion of biomass and manure to biochars using thermogravimetric analysis. Bioresource Technology, 146(10), 485–493.

    CAS  PubMed  Google Scholar 

  52. Wang, S., Tang, Y., Schobert, H. H., Guo, Y. N., Gao, W., & Lu, X. (2013). FTIR and simultaneous TG/MS/FTIR study of Late Permian coals from Southern China. Journal of Analytical and Applied Pyrolysis, 100(6), 75–80.

    CAS  Google Scholar 

  53. Liu, Q., Wang, S., Zheng, Y., Luo, Z., & Cen, K. (2008). Mechanism study of wood lignin pyrolysis by using TG–FTIR analysis. Journal of Analytical and Applied Pyrolysis, 82(1), 170–177.

    CAS  Google Scholar 

  54. Gao, N., Li, A., Cui, Q., Lin, D., & Yue, D. (2013). TG–FTIR and Py–GC/MS analysis on pyrolysis and combustion of pine sawdust. Journal of Analytical and Applied Pyrolysis, 100(6), 26–32.

    CAS  Google Scholar 

  55. Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12–13), 1781–1788.

    CAS  Google Scholar 

  56. Yang, J., Chen, H., Zhao, W., & Zhou, J. (2016). TG–FTIR-MS study of pyrolysis products evolving from peat. Journal of Analytical and Applied Pyrolysis, 117, 296–309.

    CAS  Google Scholar 

  57. Zhi, Z., Changjian, W., Gai, H., Haoran, L., Shenlin, Y., & Aifeng, Z. (2018). Thermal degradation behaviors and reaction mechanism of carbon fibre-epoxy composite from hydrogen tank by TG-FTIR. Journal of Hazardous Materials, 357, 73–80.

    Google Scholar 

  58. Granada, E., Eguía, P., Vilan, J. A., Comesaña, J. A., & Comesaña, R. (2012). FTIR quantitative analysis technique for gases. Application in a biomass thermochemical process. Renewable Energy, 41(none), 416–421.

    CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51806106) and the Science and Technology Department of Jiangsu Province, China (No: BK20170838).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruiyu Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, X., Pan, R., Li, P. et al. Kinetics, Thermodynamics, and Volatile Products of Camphorwood Pyrolysis in Inert Atmosphere. Appl Biochem Biotechnol 191, 1605–1623 (2020). https://doi.org/10.1007/s12010-020-03300-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03300-2

Keywords

Navigation