Skip to main content
Log in

Enhanced Acid Tolerance in Lactobacillus acidophilus by Atmospheric and Room Temperature Plasma (ARTP) Coupled with Adaptive Laboratory Evolution (ALE)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to improve the acid tolerance of Lactobacillus acidophilus by combining atmospheric and room temperature plasma (ARTP) mutation with adaptive laboratory evolution (ALE). To achieve a high mutation efficiency, 60 s was determined as the ideal exposure time for ARTP mutation of L. acidophilus with a survival rate of 5.91%. The ARTP-ALE mutant strain LAartp-ale2 displayed increased lactic acid stress tolerance with survival rates of 75.67% and 25.78% when cultured in pH 3.0 and 2.5, respectively, for 3 h. Physiological analysis revealed that the ARTP-ALE mutant exhibited a lower inner membrane permeability than that of the parental strain during acid stress. Furthermore, the mutant LAartp-ale2 produced more biofilm in response to lactic acid-induced acid stress and showed an increased hydrophobicity (87.2%) when compared to the parent strain (76.2%) at pH 2.5. LAartp-ale2 exhibited a higher unsaturated fatty acid (UFA) to saturated fatty acid (SFA) ratio that affected the physical state of the cell membrane for increased survival in pH 3.0 and 2.5. The mutation with ARTP coupled with ALE in the present study proved to be effective in enhancing the acid tolerance of L. acidophilus for potential industrial use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carr, F. J., Chill, D., & Maida, N. (2002). The lactic acid bacteria: a literature survey. Critical Reviews in Microbiology, 28(4), 281–370. https://doi.org/10.1080/1040-840291046759.

    Article  CAS  PubMed  Google Scholar 

  2. Walker, D. C., Girgis, H. S., & Klaenhammer, T. R. (1999). The groESL chaperone operon of Lactobacillus johnsonii. Applied and Environmental Microbiology, 65(7), 3033–3041.

    Article  CAS  Google Scholar 

  3. Papadimitriou, K., Alegría, Á., Bron, P. A., De Angelis, M., Gobbetti, M., Kleerebezem, M., et al. (2016). Stress physiology of lactic acid bacteria. Microbiology and Molecular Biology Reviews, 80(3), 837–890. https://doi.org/10.1128/MMBR.00076-15.

    Article  CAS  PubMed  Google Scholar 

  4. Ozogul, F., & Imen, H. (2016). Lactic acid bacteria: Lactobacillus species: Lactobacillus acidophilus. Reference Module in Food Science. Elsevier. doi:https://doi.org/10.1016/B978-0-08-100596-5.00852-0.

  5. Johansen, E. (2017). Future access and improvement of industrial lactic acid bacteria cultures. Microbial Cell Factories, 16(1), 1–5. https://doi.org/10.1186/s12934-017-0851-1.

    Article  Google Scholar 

  6. Xavier, D., Alberto, A., Aliakbarian, B., Bedani, R., Marta, S., Saad, I., & Perego, P. (2019). Improved probiotic survival to in vitro gastrointestinal stress in a mousse containing Lactobacillus acidophilus La-5 microencapsulated with inulin by spray drying. LWT - Food Science and Technology, 99, 404–410. https://doi.org/10.1016/j.lwt.2018.10.010.

    Article  CAS  Google Scholar 

  7. Kulkarni, S., Haq, S. F., & Samant, S. (2018). Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2. Probiotics and Antimicrobial Proteins, 10(4), 717–727. https://doi.org/10.1007/s12602-017-9321-7.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, X., Zhang, X. F., Li, H. P., Wang, L. Y., Zhang, C., Xing, X. H., & Bao, C. Y. (2014). Atmospheric and room temperature plasma (ARTP) as a new powerful mutagenesis tool. Applied Microbiology and Biotechnology, 98(12), 5387–5396. https://doi.org/10.1007/s00253-014-5755-y.

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, X., Zhang, C., Zhou, Q. Q., Zhang, X. F., Wang, L. Y., Chang, H. B., Li, H. P., Oda, Y., & Xing, X. H. (2015). Quantitative evaluation of DNA damage and mutation rate by atmospheric and room-temperature plasma (ARTP) and conventional mutagenesis. Applied Microbiology and Biotechnology, 99(13), 5639–5646. https://doi.org/10.1007/s00253-015-6678-y.

    Article  CAS  PubMed  Google Scholar 

  10. Qiang, W., Ling-ran, F., Luo, W., Han-guang, L., Lin, W., Ya, Z., & Xiao-bin, Y. (2014). Mutation breeding of lycopene-producing strain Blakeslea trispora by a novel atmospheric and room temperature plasma (ARTP). Applied Biochemistry and Biotechnology, 174(1), 452–460. https://doi.org/10.1007/s12010-014-0998-8.

    Article  CAS  PubMed  Google Scholar 

  11. Ottenheim, C., Nawrath, M., & Wu, J. C. (2018). Microbial mutagenesis by atmospheric and room-temperature plasma (ARTP): the latest development. Bioresources and Bioprocessing, 5(1), 1–14. https://doi.org/10.1186/s40643-018-0200-1.

    Article  Google Scholar 

  12. Gao, C., Yang, F., & Liu, Y. (2017). Plasma mutation breeding of high yield γ-aminobutyric acid lactic acid bacteria. Gene Science and Engineering, 1(1), 8–18.

    Google Scholar 

  13. Wu, X., Wei, Y., Xu, Z., & Liu, L. (2015). Evaluation of an ethanol-tolerant Acetobacter pasteurianus mutant generated by a new atmospheric and room temperature plasma (ARTP). Advances in Applied Biotechnology, 277–286. https://doi.org/10.1007/978-3-662-46318-5.

  14. Zhang, J., Wu, C., Du, G., & Chen, J. (2012). Enhanced acid tolerance in Lactobacillus casei by adaptive evolution and compared stress response during acid stress. Biotechnology and Bioprocess Engineering, 17(2), 283–289. https://doi.org/10.1007/s12257-011-0346-6.

    Article  CAS  Google Scholar 

  15. Jin, J., Qin, Q., Guo, H., Liu, S., Ge, S., Zhang, H., Cui, J., & Ren, F. (2015). Effect of pre-stressing on the acid-stress response in Bifidobacterium revealed using proteomic and physiological approaches. PLoS One, 10(2), 1–14. https://doi.org/10.1371/journal.pone.0117702.

    Article  CAS  Google Scholar 

  16. Li, G., Li, H., Wang, L., Wang, S., Zhao, H., Sun, W., et al. (2008). Genetic effects of radio-frequency, atmospheric-pressure glow with helium. Applied Physics Letters, 92, 2006–2009. https://doi.org/10.1063/1.2938692.

    Article  CAS  Google Scholar 

  17. Ghosh, A. R. (2015). Probiotic potentials among lactic acid bateria isolated from curd. International Journal of Research in Ayurveda and Pharmacy, 2(2), 602–609.

    Google Scholar 

  18. Wu, C., Zhang, J., Chen, W., Wang, M., Du, G., & Chen, J. (2012). A combined physiological and proteomic approach to reveal lactic-acid-induced alterations in Lactobacillus casei Zhang and its mutant with enhanced lactic acid tolerance. Applied Microbiology and Biotechnology, 93(2), 707–722. https://doi.org/10.1007/s00253-011-3757-6.

    Article  CAS  PubMed  Google Scholar 

  19. Belli, W. A., & Marquis, R. E. (1991). Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Applied and Environmental Microbiology, 57(4), 1134–1138.

  20. Rawat, R., Yu, X.-H., Sweet, M., & Shanklin, J. (2012). Residues 111 and 115 influence product partitioning of Momordica charantia conjugase. The Journal of Biological Chemistry, 287(20), 16230–16237. https://doi.org/10.1074/jbc.M111.325316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soliman, A. H. S., Sharoba, A. M., Bahlol, H. E. M., Soliman, A. S., & Radi, O. M. (2015). Evaluation of Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum for probiotic characteristics. Middle East Journal of Applied Sciences, 05(01), 10–18. https://doi.org/10.1016/j.fsigen.2014.11.016.

    Article  CAS  Google Scholar 

  22. Grosu-Tudor, S. S., Brown, L., Hebert, E. M., Brezeanu, A., Brinzan, A., Fadda, S., Mozzi, F., & Zamfir, M. (2016). S-layer production by Lactobacillus acidophilus IBB 801 under environmental stress conditions. Applied Microbiology and Biotechnology, 100(10), 4573–4583. https://doi.org/10.1007/s00253-016-7355-5.

    Article  CAS  PubMed  Google Scholar 

  23. Ming, H., Xu, D., Guo, Z., & Liu, Y. (2016). Adaptive evolution of Lactobacillus casei under acidic conditions enhances multiple-stress tolerance. Food Science and Technology Research, 22(3), 331–336. https://doi.org/10.3136/fstr.22.331.

    Article  CAS  Google Scholar 

  24. Overbeck, T. J., Welker, D. L., Hughes, J. E., & Steele, J. L. (2017). Transient MutS-based hypermutation system for adaptive evolution of Lactobacillus casei to low pH. Applied and Environmental Microbiology, 83(20), 1–15.

    Article  Google Scholar 

  25. De Angelis, M., Gobbetti, M., & Agraria, F. (2004). Enviromental stress responses in Lactobacillus: a review. Protemics, 4, 106–122. https://doi.org/10.1002/pmic.200300497.

    Article  CAS  Google Scholar 

  26. Sanhueza, E., Paredes-osses, E., González, C. L., & García, A. (2015). Effect of pH in the survival of Lactobacillus salivarius strain UCO _ 979C wild type and the pH acid acclimated variant. Electronic Journal of Biotechnology, 18(5), 343–346. https://doi.org/10.1016/j.ejbt.2015.06.005.

    Article  CAS  Google Scholar 

  27. Ayad, E. H. E., Nashat, S., El-Sadek, N., Metwaly, H., & El-Soda, M. (2004). Selection of wild lactic acid bacteria isolated from traditional Egyptian dairy products according to production and technological criteria. Food Microbiology, 21(6), 715–725. https://doi.org/10.1016/j.fm.2004.02.009.

    Article  Google Scholar 

  28. Wang, Y., Corrieu, G., & Be, C. (2005). Fermentation pH and temperature influence the cryotolerance of Lactobacillus acidophilus RD758. Journal of Dairy Science, 88, 21–29. https://doi.org/10.3168/jds.S0022-0302(05)72658-8.

    Article  CAS  PubMed  Google Scholar 

  29. Neviani, E., Divizia, R., Abbiati, E., & Gatti, M. (1995). Acidification activity of thermophilic Lactobacilli under the temperature gradient of grana cheese making. Journal of Dairy Science, 78(6), 1248–1252. https://doi.org/10.3168/jds.S0022-0302(95)76744-3.

    Article  CAS  Google Scholar 

  30. Cotter, P. D., & Hill, C. (2003). Surviving the acid test : Responses of gram-positive bacteria to low pH. Microbiology and Molecular Biology Reviews, 67(3), 429–453. https://doi.org/10.1128/MMBR.67.3.429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wu, C., Huang, J., & Zhou, R. (2014). Progress in engineering acid stress resistance of lactic acid bacteria. Applied Microbiology and Biotechnology, 98(3), 1055–1063. https://doi.org/10.1007/s00253-013-5435-3.

    Article  CAS  PubMed  Google Scholar 

  32. Guo, Y., Tian, X., Huang, R., Tao, X., Shah, N. P., Wei, H., & Wan, C. (2017). A physiological comparative study of acid tolerance of Lactobacillus plantarum ZDY 2013 and L. plantarum ATCC 8014 at membrane and cytoplasm levels. Annals of Microbiology, 67(10), 669–677. https://doi.org/10.1007/s13213-017-1295-x.

    Article  Google Scholar 

  33. Grosu-tudor, M. Z. S. (2014). Stress response of some lactic acid bacteria isolated from Romanian artisan dairy products. World Journal of Microbiology and Biotechnology, (30), 375–384. https://doi.org/10.1007/s11274-013-1454-6.

  34. Jose, N., Bunt, C., & Hussain, M. (2015). Comparison of microbiological and probiotic characteristics of Lactobacilli isolates from dairy food products and animal rumen contents. Microorganisms, 3(2), 198–212. https://doi.org/10.3390/microorganisms3020198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ambalam, P., Kondepudi, K. K., Nilsson, I., & Wadstro, T. (2012). Bile stimulates cell surface hydrophobicity, Congo red binding and biofilm formation of Lactobacillus strains. FEMS Microbiology Letters, 1–10. doi:https://doi.org/10.1111/j.1574-6968.2012.02590.x.

  36. Kubota, H., Senda, S., Nomura, N., Tokuda, H., & Uchiyama, H. (2008). Biofilm formation by lactic acid bacteria and resistance to environmental stress. Journal of Bioscience and Bioengineering, 106(4), 381–386. https://doi.org/10.1263/jbb.106.381.

    Article  CAS  PubMed  Google Scholar 

  37. Alexandre, H., Mathieu, B., & Charpentier, C. (1996). Alteration in membrane fluidity and lipid composition , and modulation of H + -ATPase activity in Saccharomyces cerevisiae caused by decanoic acid. Microbiology, 142, 469–475.

    Article  CAS  Google Scholar 

  38. Montanari, C., Sado, S. L., Serrazanetti, D. I., Etoa, F., & Guerzoni, M. E. (2010). Synthesis of cyclopropane fatty acids in Lactobacillus helveticus and Lactobacillus sanfranciscensis and their cellular fatty acids changes following short term acid and cold stresses. Food Microbiology, 27, 493–502. https://doi.org/10.1016/j.fm.2009.12.003.

    Article  CAS  PubMed  Google Scholar 

  39. Yeagle, L. (1987). Lipid regulation of cell membrane structure and function. FASEB Journal, 3, 1833–1842.

    Article  Google Scholar 

  40. Coulibaly, I., Kouassi, E. K., Traore, S., & Kone, D. (2016). Impact of pH on changing the fatty acid composition and growth of Lactobacillus plantarum and Lactobacillus casei. International Journal of Science and Research, 5(6), 2546–2551.

    Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Special Research and Development Grant for Northern Jiangsu Area, China (SZ-YC2017001) and International Foundation for Science (F/4930-2F).

Author information

Authors and Affiliations

Authors

Contributions

FengJie Cui conceived of the study and assisted in its design and coordination and drafted the manuscript. Belinda Amanda Nyabako performed the experiments, analyzed results, and drafted the manuscript. Hua Fang, Kai-Yue Liu, Ting-Lei Tao, Xin-Yi Zan, and Wen-Jing Sun performed partial experiments and analyzed results. All authors read and approved the manuscript.

Corresponding authors

Correspondence to FengJie Cui or WenJing Sun.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nyabako, B.A., Fang, H., Cui, F. et al. Enhanced Acid Tolerance in Lactobacillus acidophilus by Atmospheric and Room Temperature Plasma (ARTP) Coupled with Adaptive Laboratory Evolution (ALE). Appl Biochem Biotechnol 191, 1499–1514 (2020). https://doi.org/10.1007/s12010-020-03264-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-020-03264-3

Keywords

Navigation