Skip to main content
Log in

Low Fouling, Peptoid-Coated Polysulfone Hollow Fiber Membranesthe Effect of Grafting Density and Number of Side Chains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The development of low fouling membranes to minimize protein adsorption has relevance in various biomedical applications. Here, electrically neutral peptoids containing 2-methoxyethyl glycine (NMEG) side chains were attached to polysulfone hollow fiber membranes via polydopamine. The number of side chains and grafting density were varied to determine the effect on coating properties and the ability to prevent fouling. NMEG peptoid coatings have high hydrophilicity compared to unmodified polysulfone membranes. The extent of biofouling was evaluated using bovine serum albumin, as well as platelet adhesion. The results suggest that both the number of side chains and grafting density play a role in the surface properties that drive biofouling. Protein adsorption decreased with increasing peptoid grafting density and is lowest above a critical grafting density specific to peptoid chain length. Our findings show that the optimization of grafting density and hydration of the surface are important factors for achieving the desired antifouling performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yang, Y.-F., Li, Y., Li, Q.-L., Wan, L.-S., & Xu, Z.-K. (2010). Surface hydrophilization of microporous polypropylene membrane by grafting zwitterionic polymer for anti-biofouling. Journal of Membrane Science, 362, 255–264.

    Article  CAS  Google Scholar 

  2. Yang, Q., Kaul, C., & Ulbricht, M. (2010). Anti-nonspecific protein adsorption properties of biomimetic glycocalyx-like glycopolymer layers: effects of glycopolymer chain density and protein size. Langmuir, 26(8), 5746–5752.

    Article  CAS  PubMed  Google Scholar 

  3. Abolhassani, M., Griggs, C. S., Gurtowski, L. A., Mattei-Sosa, J. A., Nevins, M., Medina, V. F., Morgan, T. A., & Greenlee, L. F. (2017). Scalable chitosan-graphene oxide membranes: the effect of GO size on properties and cross-flow filtration performance. ACS Omega, 2(12), 8751–8759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Esfahani, M. R., Aktij, S. A., Dabaghian, Z., Firouzjaei, M. D., Rahimpour, A., Eke, J., Escobar, I. C., Abolhassani, M., Greenlee, L. F. and Esfahani, A. R. (2019) Nanocomposite membranes for water separation and purification: Fabrication, modification, and applications. Separation and Purification Technology, 213, 465–499.

  5. Bellassai, N., Marti, A., Spoto, G., & Huskens, J. (2018). Low-fouling, mixed-charge poly-l-lysine polymers with anionic oligopeptide side-chains. Journal of Materials Chemistry B.

  6. Sardari, K., Fyfe, P., Lincicome, D. and Wickramasinghe, S. R. (2018) Aluminum electrocoagulation followed by forward osmosis for treating hydraulic fracturing produced waters. Desalination, 428, 172–181.

  7. Sardari, K., Askegaard, J., Chiao, Y.-H., Darvishmanesh, S., Kamaz, M., & Wickramasinghe, S. R. (2018). Electrocoagulation followed by ultrafiltration for treating poultry processing wastewater. Journal of Environmental Chemical Engineering, 6, 4937–4944.

    Article  CAS  Google Scholar 

  8. Sardari, K., Fyfe, P., & Wickramasinghe, S. R. (2018). Integrated electrocoagulation-forward osmosis–membrane distillation for sustainable water recovery from hydraulic fracturing produced water. Journal of Membrane Science.

  9. Jeong, S., Kim, L. H., Kim, S.-J., Nguyen, T. V., Vigneswaran, S., & Kim, I. S. (2012). Biofouling potential reductions using a membrane hybrid system as a pre-treatment to seawater reverse osmosis. Applied Biochemistry and Biotechnology, 167(6), 1716–1727.

    Article  CAS  PubMed  Google Scholar 

  10. Feng, L., Li, X., Song, P., Du, G., & Chen, J. (2011). Surface interactions and fouling properties of Micrococcus luteus with microfiltration membranes. Applied Biochemistry and Biotechnology, 165(5-6), 1235–1244.

  11. Anari, Z., Sengupta, A., Sardari, K., & Wickramasinghe, S. R. (2019). Surface modification of PVDF membranes for treating produced waters by direct contact membrane distillation. Separation and Purification Technology, 224, 388–396.

    Article  CAS  Google Scholar 

  12. Sardari, K., Fyfe, P., Lincicome, D., & Wickramasinghe, S. R. (2018). Combined electrocoagulation and membrane distillation for treating high salinity produced waters. Journal of Membrane Science, 564, 82–96.

    Article  CAS  Google Scholar 

  13. Venkataraman, R., Subramanian, S., & Kellum, J. A. (2003). Clinical review: extracorporeal blood purification in severe sepsis. Critical Care, 7, 139.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang, D.-L., Liu, J., Cui, W.-Y., Ji, D.-Y., Zhang, Y., & Liu, W.-H. (2011). Differences in bio-incompatibility among four biocompatible dialyzer membranes using in maintenance hemodialysis patients. Renal Failure, 33(7), 682–691.

    Article  CAS  PubMed  Google Scholar 

  15. Ishihara, K., Fukumoto, K., Iwasaki, Y., & Nakabayashi, N. (1999). Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 20(17), 1553–1559.

    Article  CAS  PubMed  Google Scholar 

  16. Higuchi, A., Sugiyama, K., Yoon, B. O., Sakurai, M., Hara, M., Sumita, M., Sugawara, S.-i., & Shirai, T. (2003). Serum protein adsorption and platelet adhesion on pluronic™-adsorbed polysulfone membranes. Biomaterials, 24(19), 3235–3245.

    Article  CAS  PubMed  Google Scholar 

  17. Yang, M. C., & Lin, W. C. (2003). Protein adsorption and platelet adhesion of polysulfone membrane immobilized with chitosan and heparin conjugate. Polymers for Advanced Technologies, 14, 103–113.

    Article  CAS  Google Scholar 

  18. Campoccia, D., Montanaro, L., & Arciola, C. R. (2013). A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials, 34(34), 8533–8554.

    Article  CAS  PubMed  Google Scholar 

  19. Banerjee, I., Pangule, R. C., & Kane, R. S. (2011). Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Advanced Materials, 23(6), 690–718.

    Article  CAS  PubMed  Google Scholar 

  20. Tesler, A. B., Kim, P., Kolle, S., Howell, C., Ahanotu, O., & Aizenberg, J. (2015). Extremely durable biofouling-resistant metallic surfaces based on electrodeposited nanoporous tungstite films on steel. Nature Communications, 6, 8649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chang, Y., Chen, S., Zhang, Z., & Jiang, S. (2006). Highly protein-resistant coatings from well-defined diblock copolymers containing sulfobetaines. Langmuir, 22(5), 2222–2226.

    Article  CAS  PubMed  Google Scholar 

  22. Wang, Y.-B., Gong, M., Yang, S., Nakashima, K., & Gong, Y.-K. (2014). Hemocompatibility and film stability improvement of crosslinkable MPC copolymer coated polypropylene hollow fiber membrane. Journal of Membrane Science, 452, 29–36.

    Article  CAS  Google Scholar 

  23. Mahmoudi, N., Reed, L., Moix, A., Alshammari, N., Hestekin, J., & Servoss, S. L. (2017). PEG-mimetic peptoid reduces protein fouling of polysulfone hollow fibers. Colloids and Surfaces B: Biointerfaces, 149, 23–29.

    Article  CAS  PubMed  Google Scholar 

  24. Statz, A. R., Kuang, J., Ren, C., Barron, A. E., Szleifer, I., & Messersmith, P. B. (2009). Experimental and theoretical investigation of chain length and surface coverage on fouling of surface grafted polypeptoids. Biointerphases, 4(2), FA22–FA32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Statz, A. R., Barron, A. E., & Messersmith, P. B. (2008). Protein, cell and bacterial fouling resistance of polypeptoid-modified surfaces: effect of side-chain chemistry. Soft Matter, 4(1), 131–139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Statz, A. R., Meagher, R. J., Barron, A. E., & Messersmith, P. B. (2005). New peptidomimetic polymers for antifouling surfaces. Journal of the American Chemical Society, 127(22), 7972–7973.

    Article  CAS  PubMed  Google Scholar 

  27. Zuckermann, R. N., Kerr, J. M., Kent, S. B., & Moos, W. H. (1992). Efficient method for the preparation of peptoids [oligo (N-substituted glycines)] by submonomer solid-phase synthesis. Journal of the American Chemical Society, 114, 10646–10647.

    Article  CAS  Google Scholar 

  28. Miller, S. M., Simon, R. J., Ng, S., Zuckermann, R. N., Kerr, J. M., & Moos, W. H. (1995). Comparison of the proteolytic susceptibilities of homologous L-amino acid, D-amino acid, and N-substituted glycine peptide and peptoid oligomers. Drug Development Research, 35, 20–32.

    Article  CAS  Google Scholar 

  29. Patch, J. A., & Barron, A. E. (2002). Mimicry of bioactive peptides via non-natural, sequence-specific peptidomimetic oligomers. Current Opinion in Chemical Biology, 6(6), 872–877.

    Article  CAS  PubMed  Google Scholar 

  30. Chapman, R. G., Ostuni, E., Takayama, S., Holmlin, R. E., Yan, L., & Whitesides, G. M. (2000). Surveying for surfaces that resist the adsorption of proteins. Screening, 11, 13.

    Google Scholar 

  31. Wang, L.-L., Wu, J.-J., Zhang, Z.-B., Zhou, J., He, X.-C., Yu, H.-Y., & Gu, J.-S. (2016). Methoxypolyethylene glycol grafting on polypropylene membrane for enhanced antifouling characteristics–effect of pendant length and grafting density. Separation and Purification Technology, 164, 81–88.

    Article  CAS  Google Scholar 

  32. Feng, W., Brash, J. L., & Zhu, S. (2006). Non-biofouling materials prepared by atom transfer radical polymerization grafting of 2-methacryloloxyethyl phosphorylcholine: Separate effects of graft density and chain length on protein repulsion. Biomaterials, 27(6), 847–855.

    Article  CAS  PubMed  Google Scholar 

  33. Kingshott, P., Thissen, H., & Griesser, H. J. (2002). Effects of cloud-point grafting, chain length, and density of PEG layers on competitive adsorption of ocular proteins. Biomaterials, 23(9), 2043–2056.

    Article  CAS  PubMed  Google Scholar 

  34. Sofia, S. J., Premnath, V., & Merrill, E. W. (1998). Poly (ethylene oxide) grafted to silicon surfaces: grafting density and protein adsorption. Macromolecules, 31(15), 5059–5070.

    Article  CAS  PubMed  Google Scholar 

  35. Neffe, A. T., von Ruesten-Lange, M., Braune, S., Lützow, K., Roch, T., Richau, K., Krüger, A., Becherer, T., Thünemann, A. F., & Jung, F. (2014). Multivalent grafting of hyperbranched oligo-and polyglycerols shielding rough membranes to mediate hemocompatibility. Journal of Materials Chemistry B, 2, 3626–3635.

    Article  CAS  PubMed  Google Scholar 

  36. Feng, W., Zhu, S., Ishihara, K., & Brash, J. L. (2006). Protein resistant surfaces: comparison of acrylate graft polymers bearing oligo-ethylene oxide and phosphorylcholine side chains. Biointerphases, 1, 50–60.

    Article  CAS  PubMed  Google Scholar 

  37. Lau, K. H. A., Ren, C., Sileika, T. S., Park, S. H., Szleifer, I., & Messersmith, P. B. (2012). Surface-grafted polysarcosine as a peptoid antifouling polymer brush. Langmuir, 28(46), 16099–16107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye, X., Gong, J., Wang, Z., Zhang, Z., Han, S., & Jiang, X. (2013). Hybrid POSS-containing brush on gold surfaces for protein resistance. Macromolecular Bioscience, 13(7), 921–926.

    Article  CAS  PubMed  Google Scholar 

  39. Yue, W.-W., Li, H.-J., Xiang, T., Qin, H., Sun, S.-D., & Zhao, C.-S. (2013). Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 446, 79–91.

    Article  CAS  Google Scholar 

  40. Li, L., Cheng, C., Xiang, T., Tang, M., Zhao, W., Sun, S., & Zhao, C. (2012). Modification of polyethersulfone hemodialysis membrane by blending citric acid grafted polyurethane and its anticoagulant activity. Journal of Membrane Science, 405, 261–274.

    Article  CAS  Google Scholar 

  41. Anderson, J. M. (2001). Biological responses to materials. Annual Review of Materials Research, 31, 81–110.

    Article  CAS  Google Scholar 

  42. Holmlin, R. E., Chen, X., Chapman, R. G., Takayama, S., & Whitesides, G. M. (2001). Zwitterionic SAMs that resist nonspecific adsorption of protein from aqueous buffer. Langmuir, 17, 2841–2850.

    Article  CAS  Google Scholar 

  43. Ostuni, E., Chapman, R. G., Holmlin, R. E., Takayama, S., & Whitesides, G. M. (2001). A survey of structure-property relationships of surfaces that resist the adsorption of protein. Langmuir, 17, 5605–5620.

    Article  CAS  Google Scholar 

  44. Dalsin, J. L., & Messersmith, P. B. (2005). Bioinspired antifouling polymers. Materials Today, 8, 38–46.

    Article  CAS  Google Scholar 

  45. Jiang, J.-H., Zhu, L.-P., Li, X.-L., Xu, Y.-Y., & Zhu, B.-K. (2010). Surface modification of PE porous membranes based on the strong adhesion of polydopamine and covalent immobilization of heparin. Journal of Membrane Science, 364, 194–202.

    Article  CAS  Google Scholar 

  46. Shahkaramipour, N., Lai, C. K., Venna, S. R., Sun, H., Cheng, C., & Lin, H. (2018). Membrane surface modification using thiol-containing zwitterionic polymers via bio-adhesive polydopamine. Industrial & Engineering Chemistry Research.

  47. Shahkaramipour, N., Lai, C. K., Venna, S. R., Sun, H., Cheng, C., & Lin, H. (2018). Membrane surface modification using thiol-containing zwitterionic polymers via bioadhesive polydopamine. Industrial & Engineering Chemistry Research, 57, 2336–2345.

    Article  CAS  Google Scholar 

  48. Shahkaramipour, N., Tran, T. N., Ramanan, S., & Lin, H. (2017). Membranes with surface-enhanced antifouling properties for water purification. Membranes, 7, 13.

    Article  PubMed Central  CAS  Google Scholar 

  49. Shahkaramipour, N., Ramanan, S. N., Fister, D., Park, E., Venna, S. R., Sun, H., Cheng, C., & Lin, H. (2017). Facile grafting of zwitterions onto the membrane surface to enhance antifouling properties for wastewater reuse. Industrial & Engineering Chemistry Research, 56, 9202–9212.

    Article  CAS  Google Scholar 

  50. Zhou, L., Jiang, Y., Ma, L., He, Y., & Gao, J. (2015). Immobilization of glucose oxidase on polydopamine-functionalized graphene oxide. Applied Biochemistry and Biotechnology, 175(2), 1007–1017.

    Article  CAS  PubMed  Google Scholar 

  51. Patankar, N. A. (2003). On the modeling of hydrophobic contact angles on rough surfaces. Langmuir, 19, 1249–1253.

    Article  CAS  Google Scholar 

  52. Hoseinpour, V., Ghaee, A., Vatanpour, V., & Ghaemi, N. (2018). Surface modification of PES membrane via aminolysis and immobilization of carboxymethylcellulose and sulphated carboxymethylcellulose for hemodialysis. Carbohydrate Polymers, 188, 37–47.

    Article  CAS  PubMed  Google Scholar 

  53. Cao, L., Chang, M., Lee, C. Y., Castner, D. G., Sukavaneshvar, S., Ratner, B. D., & Horbett, T. A. (2007). Plasma-deposited tetraglyme surfaces greatly reduce total blood protein adsorption, contact activation, platelet adhesion, platelet procoagulant activity, and in vitro thrombus deposition. Journal of Biomedical Materials Research Part A, 81, 827–837.

    Article  PubMed  CAS  Google Scholar 

  54. Wang, W., Huang, X., Yin, H., Fan, W., Zhang, T., Li, L., & Mao, C. (2015). Polyethylene glycol acrylate-grafted polysulphone membrane for artificial lungs: plasma modification and haemocompatibility improvement. Biomedical Materials, 10, 065022.

    Article  PubMed  CAS  Google Scholar 

  55. Motlagh, D., Allen, J., Hoshi, R., Yang, J., Lui, K., & Ameer, G. (2007). Hemocompatibility evaluation of poly (diol citrate) in vitro for vascular tissue engineering. Journal of Biomedical Materials Research Part A, 82(4), 907–916.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Min Zou for assistance with contact angle measurements, Dr. Timothy Muldoon for assistance with fluorescence imaging, the Arkansas Statewide Mass Spectrometry Facility for assistance with MALDI, and the Arkansas Nano & Bio Materials Characterization Facility for assistance with SEM. The authors also acknowledge Nanostone (Oceanside, CA) for providing PSU pellets. The authors thank Dr. Philip Turner, Dr. Dmytro Demydov, Dr. Helya Najafi, Dr. German Raul Perez Bakovic, Dr. Kevin Roberts, John Moore, Lauren Reed, and Dr. Tammy Lutz-Rechtin for assistance in the laboratory and Peggy Anderson for assistance with the manuscript.

Funding

Support has been provided in part by the Arkansas Biosciences Institute, the major research component of the Arkansas Tobacco Settlement Proceeds Act of 2000, and the Center for Advanced Surface Engineering (CASE), under the National Science Foundation (NSF) Grant No. OIA-1457888 and the Arkansas EPSCoR Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shannon L. Servoss.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoudi, N., Roberts, J., Harrison, G. et al. Low Fouling, Peptoid-Coated Polysulfone Hollow Fiber Membranesthe Effect of Grafting Density and Number of Side Chains. Appl Biochem Biotechnol 191, 824–837 (2020). https://doi.org/10.1007/s12010-019-03218-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03218-4

Keywords

Navigation