Skip to main content
Log in

Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Polymeric nanoparticles gain a widespread interest in food and pharmaceutical industries as delivery systems that encapsulate, protect, and release lipophilic compounds such as omega-3 fatty acids, fat-soluble vitamins, carotenoids, carvedilol, cyclosporine, and ketoprofen. In this study, medium-chain-length poly-3-hydroxyalkanoate (mcl-PHA)-incorporated nanoparticle was developed via facile organic solvent-free nanoemulsion templating technique. The water content (W/surfactant-to-oil (S/O)), S/O, and Cremophor EL-to-Span 80 (Cremo/Sp80) ratios were first optimized using response surface methodology (RSM) to obtain nanoemulsion template prior to incorporation of mcl-PHA. Their effects on nanoemulsion formation were investigated. The mcl-PHA-incorporated nanoparticle system showed a good preservation capability of β-carotene and extended storage stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Omara, A. E., Kam, A., Alqahtania, A., Li, M. K., Razmovski-Naumovski, V., Nammi, S., et al. (2010). Herbal medicines and nutraceuticals for diabetic vascular complications: mechanisms of action and bioactive phytochemicals. Current Pharmaceutical Design, 16, 3776–3807.

    Article  Google Scholar 

  2. Huang, W. Y., Davidge, S. T., & Wu, J. (2013). Bioactive natural constituents from food sources—potential use in hypertension prevention and treatment. Critical Reviews in Food Science and Nutrition, 53, 615–630.

    Article  CAS  Google Scholar 

  3. Stan, S. D., Kar, S., Stoner, G. D., & Singh, S. V. (2008). Bioactive food components and cancer risk reduction. Journal of Cellular Biochemistry, 104, 339–356.

    Article  CAS  Google Scholar 

  4. Udenigwe, C. C., & Aluko, R. E. (2012). Food protein-derived bioactive peptides: production, processing, and potential health benefits. Journal of Food Science, 77, R11–R24.

    Article  CAS  Google Scholar 

  5. Lipinski, C. A. (2002). Poor aqueous solubility-an industry wide problem in ADME screening. American Pharmaceutical Review, 5, 82–85.

    Google Scholar 

  6. McClements, D. J., Decker, E. A., Park, Y., & Weiss, J. (2009). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Critical Reviews in Food Science and Nutrition, 49, 577–606.

    Article  CAS  Google Scholar 

  7. Kuentz, M. (2012). Lipid-based formulations for oral delivery of lipophilic drugs. Drug Discovery Today: Technologies, 9, e97–e104.

    Article  CAS  Google Scholar 

  8. McClements, D. J. (2011). Edible nanoemulsions: fabrication, properties, and functional performance. Soft Matter, 7, 2297–2316.

    Article  CAS  Google Scholar 

  9. Couvreur, P. (2013). Nanoparticles in drug delivery: past, present and future. Advanced Drug Delivery Reviews, 65, 21–23.

    Article  CAS  Google Scholar 

  10. Ganta, S., & Amiji, M. (2009). Coadministration of paclitaxel and curcumin in nanoemulsion formulations to overcome multidrug resistance in tumor cells. Molecular Pharmaceutics, 6, 928–939.

    Article  CAS  Google Scholar 

  11. Yang, Y., Marshall-Breton, C., Leser, M. E., Sher, A. A., & McClements, D. J. (2012). Fabrication of ultrafine edible emulsions: comparison of high-energy and low-energy homogenization methods. Food Hydrocolloids, 29, 398–406.

    Article  CAS  Google Scholar 

  12. Ostertag, F., Weiss, J., & McClements, D. J. (2012). Low-energy formation of edible nanoemulsions: factors influencing droplet size produced by emulsion phase inversion. Journal of Colloid and Interface Science, 388, 95–102.

    Article  CAS  Google Scholar 

  13. Maestro, A., Solè, I., González, C., Solans, C., & Gutiérrez, J. M. (2008). Influence of the phase behavior on the properties of ionic nanoemulsions prepared by the phase inversion composition method. Journal of Colloid and Interface Science, 327, 433–439.

    Article  CAS  Google Scholar 

  14. Anton, N., & Vandamme, T. F. (2009). The universality of low-energy nano-emulsification. International Journal of Pharmaceutics, 377, 142–147.

    Article  CAS  Google Scholar 

  15. Saberi, A. H., Fang, Y., & McClements, D. J. (2013). Fabrication of vitamin E-enriched nanoemulsions: factors affecting particle size using spontaneous emulsification. Journal of Colloid and Interface Science, 391, 95–102.

    Article  CAS  Google Scholar 

  16. Vauthier, C., & Bouchemal, K. (2009). Methods for the preparation and manufacture of polymeric nanoparticles. Pharmaceutical Research, 26, 1025–1058.

    Article  CAS  Google Scholar 

  17. Calderó, G., García-Celma, M. J., & Solans, C. (2011). Formation of polymeric nano-emulsions by a low-energy method and their use for nanoparticle preparation. Journal of Colloid and Interface Science, 353, 406–411.

    Article  Google Scholar 

  18. Fornaguera, C., Dols-Perez, A., Caldero, G., Garcia-Celma, M. J., Camarasa, J., & Solans, C. (2015). PLGA nanoparticles prepared by nano-emulsion templating using low-energy methods as efficient nanocarriers for drug delivery across the blood–brain barrier. Journal of Controlled Release, 211, 134–143.

    Article  CAS  Google Scholar 

  19. Bisht, S., Feldmann, G., Soni, S., Ravi, R., Karikar, C., Maitra, A., & Maitra, A. (2007). Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): a novel strategy for human cancer therapy. Journal of Nanobiotechnology, 5, 1–18.

    Article  Google Scholar 

  20. Fornaguera, C., Feiner-Gracia, N., Calderó, G., García-Celma, M. J., & Solans, C. (2015). Galantamine-loaded PLGA nanoparticles, from nano-emulsion templating, as novel advanced drug delivery systems to treat neurodegenerative diseases. Nanoscale, 7, 12076–12084.

    Article  CAS  Google Scholar 

  21. Joye, I. J., & McClements, D. J. (2014). Biopolymer-based nanoparticles and microparticles: fabrication, characterization, and application. Current Opinion in Colloid & Interface Science, 19, 417–427.

    Article  CAS  Google Scholar 

  22. Moorkoth, D., & Nampoothiri, K. M. (2014). Synthesis, colloidal properties and cytotoxicity of biopolymer nanoparticles. Applied Biochemistry and Biotechnology, 174, 2181–2194.

    Article  CAS  Google Scholar 

  23. Tang, Z. X., Qian, J. Q., & Shi, L. E. (2007). Preparation of chitosan nanoparticles as carrier for immobilized enzyme. Applied Biochemistry and Biotechnology, 136, 77–96.

    Article  CAS  Google Scholar 

  24. Cao, T. T., Zhou, Z. Z., & Zhang, Y. Q. (2014). Processing of β-glucosidase–silk fibroin nanoparticle bioconjugates and their characteristics. Applied Biochemistry and Biotechnology, 173, 544–551.

    Article  CAS  Google Scholar 

  25. Sundar, S., Kundu, J., & Kundu, S. C. (2010). Biopolymeric nanoparticles. Science and Technology of Advanced Materials, 11, 014104.

    Article  Google Scholar 

  26. Ihssen, J., Magnani, D., Thöny-Meyer, L., & Ren, Q. (2009). Use of extracellular medium chain length polyhydroxyalkanoate depolymerase for targeted binding of proteins to artificial poly [(3-hydroxyoctanoate)-co-(3-hydroxyhexanoate)] granules. Biomacromolecules, 10, 1854–1864.

    Article  CAS  Google Scholar 

  27. Marchessault, R. H., Morin, F. G., Wong, S., & Saracovan, I. (1995). Artificial granule suspensions of long side chain poly (3-hydroxyalkanoate). Canadian Journal of Microbiology, 41, 138–142.

    Article  CAS  Google Scholar 

  28. Rai, R., Keshavarz, T., Roether, J. A., Boccaccini, A. R., & Roy, I. (2011). Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future. Materials Science and Engineering: R: Reports, 72, 29–47.

    Article  Google Scholar 

  29. MuÈller, R. H., MaÈder, K., & Gohla, S. (2000). Solid lipid nanoparticles (SLN) for controlled drug delivery—a review of the state of the art. European Journal of Pharmaceutics and Biopharmaceutics, 50, 161–177.

    Article  Google Scholar 

  30. Hayashi, K., Shimanouchi, T., Kato, K., Miyazaki, T., Nakamura, A., & Umakoshi, H. (2011). Span 80 vesicles have a more fluid, flexible and “wet” surface than phospholipid liposomes. Colloids and Surfaces B: Biointerfaces, 87, 28–35.

    Article  CAS  Google Scholar 

  31. Weiszhár, Z., Czúcz, J., Révész, C., Rosivall, L., Szebeni, J., & Rozsnyay, Z. (2012). Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20. European Journal of Pharmaceutical Sciences, 45, 492–498.

    Article  Google Scholar 

  32. Salvia-Trujillo, L., Qian, C., Martín-Belloso, O., & McClements, D. J. (2013). Modulating β-carotene bioaccessibility by controlling oil composition and concentration in edible nanoemulsions. Food Chemistry, 139, 878–884.

    Article  CAS  Google Scholar 

  33. Rao, A. V., & Rao, L. G. (2007). Carotenoids and human health. Pharmacological Research, 55, 207–216.

    Article  CAS  Google Scholar 

  34. Gumel, A. M., Annuar, M. S. M., & Heidelberg, T. (2012). Biosynthesis and characterization of polyhydroxyalkanoates copolymers produced by Pseudomonas putida Bet001 isolated from palm oil mill effluent. PloS One, 7, e45214.

    Article  CAS  Google Scholar 

  35. Ishak, K. A., Annuar, M. S. M., Heidelberg, T., & Gumel, A. M. (2015). Ultrasound-assisted rapid extraction of bacterial intracellular medium-chain-length poly (3-hydroxyalkanoates) (mcl-PHAs) in medium mixture of solvent/marginal non-solvent. Arabian Journal of Science Engineering, 41, 33–44.

    Article  Google Scholar 

  36. Myers, D. (1990). Surfaces, interfaces and colloids. New York: Wiley-Vch.

    Google Scholar 

  37. Jahanzad, F., Crombie, G., Innes, R., & Sajjadi, S. (2009). Catastrophic phase inversion via formation of multiple emulsions: a prerequisite for formation of fine emulsions. Chemical Enginering Research and Design, 87, 492–498.

    Article  CAS  Google Scholar 

  38. Fernandez, P., André, V., Rieger, J., & Kühnle, A. (2004). Nano-emulsion formation by emulsion phase inversion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 251, 53–58.

    Article  CAS  Google Scholar 

  39. Mayer, S., Weiss, J., & McClements, D. J. (2013). Vitamin E-enriched nanoemulsions formed by emulsion phase inversion: factors influencing droplet size and stability. Journal of Colloid and Interface Science, 402, 122–130.

    Article  CAS  Google Scholar 

  40. Nagarajan, R. (2002). Molecular packing parameter and surfactant self-assembly: the neglected role of the surfactant tail. Langmuir, 18, 31–38.

    Article  CAS  Google Scholar 

  41. Strey, R. (1996). Phase behavior and interfacial curvature in water-oil-surfactant systems. Current Opinion in Colloid & Interface Science, 1, 402–410.

    Article  CAS  Google Scholar 

  42. Solans, C., & Solé, I. (2012). Nano-emulsions: formation by low-energy methods. Current Opinion in Colloid & Interface Science, 17, 246–254.

    Article  CAS  Google Scholar 

  43. Morales, D., Gutiérrez, J. M., Garcia-Celma, M. J., & Solans, C. (2003). A study of the relation between bicontinuous microemulsions and oil/water nano-emulsion formation. Langmuir, 19, 7196–7200.

    Article  CAS  Google Scholar 

  44. Ishak, K. A., & Annuar, M. S. M. (2016). Phase inversion of medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA)-incorporated nanoemulsion: effects of mcl-PHA molecular weight and amount on its mechanism. Colloid and Polymer Science, 294, 1969–1981.

    Article  CAS  Google Scholar 

  45. Kennedy, T. A., & Liebler, D. C. (1991). Peroxyl radical oxidation of beta-carotene: formation of beta-carotene epoxides. Chemical Research in Toxicology, 4, 290–295.

    Article  CAS  Google Scholar 

  46. Mora-Huertas, C. E., Fessi, H., & Elaissari, A. (2010). Polymer-based nanocapsules for drug delivery. International Journal of Pharmaceutics, 385, 113–142.

    Article  CAS  Google Scholar 

  47. Ishak, K. A., & Annuar, M. S. M. (2017). Facile formation of medium-chain-length poly-3-hydroxyalkanoates (mcl-PHA)-incorporated nanoparticle using combination of non-ionic surfactants. Journal of Surfactants and Detergents, 20, 341–353.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledged research funding from University of Malaya and Malaysian Ministry of Higher Education, grants nos. RP031C-15AET, RU015-2015, UM.C/625/1/HIR/MOHE/5, and FP046-2014A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Suffian M. Annuar.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ishak, K.A., Annuar, M.S.M. & Ahmad, N. Optimization of Water/Oil/Surfactant System for Preparation of Medium-Chain-Length Poly-3-Hydroxyalkanoates (mcl-PHA)-Incorporated Nanoparticles via Nanoemulsion Templating Technique. Appl Biochem Biotechnol 183, 1191–1208 (2017). https://doi.org/10.1007/s12010-017-2492-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2492-6

Keywords

Navigation