Skip to main content
Log in

Assessment of Shock Pretreatment of Corn Stover Using the Carboxylate Platform

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Corn stover was pretreated with lime and shock, a mechanical process that uses a shockwave to alter the biomass structure. Two pretreatments (lime-only and lime + shock) were evaluated using enzymatic hydrolysis, batch mixed-culture fermentations, and continuous countercurrent mixed-culture fermentation. In a 120-h enzymatic hydrolysis, shock pretreatment increased the glucan digestibility of submerged lime pretreatment (SLP) corn stover by 3.5 % and oxidative lime pretreatment (OLP) corn stover by 2.5 %. The continuum particle distribution model (CPDM) was used to simulate a four-stage continuous countercurrent mixed-culture fermentation using empirical rate models obtained from simple batch experiments. The CPDM model determined that lime + shock pretreatment increased the total carboxylic acids yield by 28.5 % over lime-only pretreatment in a countercurrent fermentation with a volatile solids loading rate (VSLR) of 12 g/(L/day) and liquid retention time (LRT) of 30 days. In a semi-continuous countercurrent fermentation performed in the laboratory for 112 days with a VSLR of 1.875 g/(L day) and LRT of 16 days, lime + shock pretreatment increased the total carboxylic acid yield by 14.8 %. The experimental results matched closely with CPDM model predictions (4.05 % error).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. National Research Council. Committee on America’s Climate C. (2010). Advancing the science of climate Change.

  2. Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conversion and Management, 52, 858–875. doi:10.1016/j.enconman.2010.08.013.

    Article  CAS  Google Scholar 

  3. Sims, R. E., Mabee, W., Saddler, J. N., & Taylor, M. (2010). An overview of second generation biofuel technologies. Bioresource Technology, 101, 1570–80. doi:10.1016/j.biortech.2009.11.046.

    Article  CAS  Google Scholar 

  4. Schmer, M. R., Vogel, K. P., Mitchell, R. B., & Perrin, R. K. (2008). Net energy of cellulosic ethanol from switchgrass. Proceedings of the National Academy of Sciences of the United States of America, 105, 464–9. doi:10.1073/pnas.0704767105.

    Article  CAS  Google Scholar 

  5. Agler, M. T., Wrenn, B. A., Zinder, S. H., & Angenent, L. T. (2011). Waste to bioproduct conversion with undefined mixed cultures: the carboxylate platform. Trends in Biotechnology, 29, 70–8. doi:10.1016/j.tibtech.2010.11.006.

    Article  CAS  Google Scholar 

  6. Granda, C. B., Holtzapple, M. T., Luce, G., Searcy, K., & Mamrosh, D. L. (2009). Carboxylate platform: the MixAlco process part 2: process economics. Applied Biochemistry and Biotechnology, 156, 107–24. doi:10.1007/s12010-008-8481-z.

    Article  Google Scholar 

  7. Holtzapple, M., & Granda, C. (2009). Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Applied Biochemistry and Biotechnology, 156, 95–106. doi:10.1007/s12010-008-8466-y.

    Article  Google Scholar 

  8. Holtzapple, M. T., & Granda, C. B. (2009). Carboxylate platform: the MixAlco process part 1: comparison of three biomass conversion platforms. Applied Biochemistry and Biotechnology, 156, 95–106. doi:10.1007/s12010-008-8466-y.

    Article  Google Scholar 

  9. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 96, 673–686. doi:10.1016/j.biortech.2004.06.025.

    Article  CAS  Google Scholar 

  10. Taherzadeh, M. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International Journal of Molecular Sciences, 9, 1621–1651.

    Article  CAS  Google Scholar 

  11. Zhu, L. (2008). Structural features affecting biomass enzymatic digestibility. Bioresource Technology, 99, 3817–3828.

    Article  CAS  Google Scholar 

  12. Kumar, R., & Wyman, C. E. (2009). Does change in accessibility with conversion depend on both the substrate and pretreatment technology? Bioresource Technology, 100, 4193–4202. doi:10.1016/j.biortech.2008.11.058.

    Article  CAS  Google Scholar 

  13. Singh, J., Suhag, M., & Dhaka, A. (2015). Augmented digestion of lignocellulose by steam explosion, acid and alkaline pretreatment methods: a review. Carbohydrate Polymers, 117, 624–631. doi:10.1016/j.carbpol.2014.10.012.

    Article  CAS  Google Scholar 

  14. Sierra, R., Smith, A., Granda, C., & Holtzapple, M. T. (2008). Producing fuels and chemicals from lignocellulosic biomass. Chemical Engineering Progress, 104, S10–S18.

    CAS  Google Scholar 

  15. Tao, L., Aden, A., Elander, R. T., Pallapolu, V. R., Lee, Y. Y., Garlock, R. J., Balan, V., Dale, B. E., Kim, Y., Mosier, N. S., Ladisch, M. R., Falls, M., Holtzapple, M. T., Sierra, R., Shi, J., Ebrik, M. A., Redmond, T., Yang, B., Wyman, C. E., Hames, B., Thomas, S., & Warner, R. E. (2011). Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresource Technology, 102, 11105–11114. doi:10.1016/j.biortech.2011.07.051.

    Article  CAS  Google Scholar 

  16. Wyman, C. E., Balan, V., Dale, B. E., Elander, R. T., Falls, M., Hames, B., Holtzapple, M. T., Ladisch, M. R., Lee, Y. Y., Mosier, N., Pallapolu, V. R., Shi, J., Thomas, S. R., & Warner, R. E. (2011). Comparative data on effects of leading pretreatments and enzyme loadings and formulations on sugar yields from different switchgrass sources. Bioresource Technology, 102, 11052–11062. doi:10.1016/j.biortech.2011.06.069.

    Article  CAS  Google Scholar 

  17. Kim, S. H. (2005). Lime pretreatment and enzymatic hydrolysis of corn stover. College Station: Texas A&M University.

    Google Scholar 

  18. Lin, Z., Huang, H., Zhang, H., Zhang, L., Yan, L., & Chen, J. (2010). Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Applied Biochemistry and Biotechnology, 162, 1872–1880. doi:10.1007/s12010-010-8965-5.

    Article  CAS  Google Scholar 

  19. Jones, M., Jones, M. (2007). Effects of physical and chemical pretreatments on the crystallinity of bagasse.

  20. Kelly, C. G. (2002). Generating highly digestible animal feed via thermo-chemical and hydrodynamic cavitation treatment of agricultural wastes.

  21. Falls, M. D. (2011). Development of oxidative lime pretreatment and shock treatment to produce highly digestible lignocellulose for biofuel and ruminant feed applications. College Station: Texas A&M University. Tex. pp. 1 online resource.

  22. Holtzapple, M. T. (2014). Novel mechanical pretreatment for lignocellulosic feedstocks, final report. DOE Project DE - EE 00050005.00.

  23. Meysing, D. (2012). Investigations of biomass pretreatment and submerged fixed-bed fermentation. College Station: Texas A&M University. Tex. pp. 1 online resource.

  24. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D. (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure.

  25. Selig, M., Weiss, N., Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass. NREL. TP-510–42629.

  26. Loescher, M. E. (1996). Volatile fatty acid fermentation of biomass and kinetic modeling using the CPDM method. Ph D. Texas A&M University.

  27. Golub, K. (2012). Effect of bioreactor mode of operation on mixed-acid fermentations. College Station: Texas A&M University. Tex. pp. 1 online resource.

  28. Fu, Z., & Holtzapple, M. T. (2011). Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-lime-treated sugarcane bagasse. Applied Microbiology and Biotechnology, 90, 1669–1679.

    Article  CAS  Google Scholar 

  29. Fu, Z. Conversion of sugarcane bagasse to carboxylic acids under thermophilic conditions.

  30. Ross, M. (1998). Production of acetic acid from waste biomass. pp. 208p.

  31. Datta, R. (1981). Acidogenic fermentation of corn stover. Biotechnology and Bioengineering, 23, 61–77.

    Article  CAS  Google Scholar 

  32. Fu, Z. (2010). Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresource Technology, 101, 2825–2836.

    Article  CAS  Google Scholar 

  33. Forrest, A. (2010). Suitability of pineapple, Aloe vera, molasses, glycerol, and office paper as substrates in the MixAlco process™. Biomass and bioenergy, 34, 1195–1200.

    Article  CAS  Google Scholar 

  34. Golub, K. W., Forrest, A. K., Wales, M. E., Hammett, A. J. M., Cope, J. L., Wilkinson, H. H., & Holtzapple, M. T. (2013). Comparison of three screening methods to select mixed-microbial inoculum for mixed-acid fermentations. Bioresource Technology, 130, 739–749. doi:10.1016/j.biortech.2012.10.010.

    Article  CAS  Google Scholar 

  35. (2014). 2013 Peer Review Report - U.S. Department of Energy, http://www.energy.gov/sites/prod/files/2014/03/f14/2013_peer_review.pdf.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pratik Darvekar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darvekar, P., Holtzapple, M.T. Assessment of Shock Pretreatment of Corn Stover Using the Carboxylate Platform. Appl Biochem Biotechnol 178, 1081–1094 (2016). https://doi.org/10.1007/s12010-015-1930-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-015-1930-6

Keywords

Navigation