Skip to main content

Advertisement

Log in

Silver Nanoparticles Synthesized by Pulsed Laser Ablation: as a Potent Antibacterial Agent for Human Enteropathogenic Gram-Positive and Gram-Negative Bacterial Strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Present investigation deals with the study, to quantify the antibacterial property of silver nanoparticles (SNPs), synthesized by pulsed laser ablation (PLA) in aqueous media, on some human enteropathogenic gram-positive and gram-negative bacterial strains. Antibacterial property was studied by measuring the zone of inhibition using agar cup double-diffusion method, minimum inhibitory concentration by serial dilution method, and growth curve for 24 h. The results clearly show the potency of antibacterial property of PLA-synthesized SNPs and suggest that it can be used as an effective growth inhibitor against various pathogenic bacterial strains in various medical devices and antibacterial control systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2
Fig 3
Fig 4
Fig 5
Fig 6
Fig 7
Fig 8

Similar content being viewed by others

References

  1. Jones, S. A., Bowler, P. G., Walker, M., & Parsons, D. (2004). Wound Repair and Regeneration, 12, 288–294.

    Article  Google Scholar 

  2. R. Holladay, W. Moeller, D. Mehta, J. Brooks, R. Roy M. Mortenson, Application Number WO2005US47699 20051230 European Patent office 2006.

  3. Silver, S., & Phung, L. T. (1996). Annual Review of Microbiology, 50, 753–789.

    Article  CAS  Google Scholar 

  4. Catauro, M., Raucci, M. G., De Gaetano, F. D., & Marotta, A. (2004). Journal of Materials Science Materials in Medicine, 15, 831–837.

    Article  CAS  Google Scholar 

  5. Crabtree, J. H., Burchette, R. J., Siddiqi, R. A., Huen, I. T., Handott, L. L., & Fishman, A. (2003). Peritoneal Dialysis International, 23, 368–374.

    CAS  Google Scholar 

  6. Cristóbal, L. F. E., Castañón, G. A. M., Martínez, R. E. M., Rodríguez, J. P. L., Marín, N. P., Macías, J. F. R., & Ruiz, F. (2009). Materials Letters, 63, 2603–2606.

    Article  Google Scholar 

  7. Sotiriou, G. A., & Pratsinis, S. E. (2010). Environmental Science and Technology, 44, 5649–5654.

    Article  CAS  Google Scholar 

  8. Cao, X. L., Cheng, C., Ma, Y. L., & Zhao, C. S. (2010). Journal of Materials Science Materials in Medicine, 21, 2861–2868.

    Article  CAS  Google Scholar 

  9. Shirley, A. D., Sreedhar, B., & Dastager, S. G. (2010). Digest Journal of Nanomaterials and Biostructures, 5, 44–51.

    Google Scholar 

  10. Kaviya, S., Santhanalakshmi, J., Viswanathan, B., Muthumary, J., & Srinivasan, K. (2011). Spectrochimica Acta Part A, 79, 594–598.

    Article  CAS  Google Scholar 

  11. Pal, S., Tak, Y. K., & Song, J. M. D. (2007). Applied and Environmental Microbiology, 73, 1712–1720.

    Article  CAS  Google Scholar 

  12. Guzmán, M. G., Dille, J., & Godet, S. (2009). International Journal of Chemical and Biomolecular Engineering, 2, 104–111.

    Google Scholar 

  13. Kawashita, M., Tsuneyama, S., Miyaji, F., Kokubo, T., Kozuka, H., & Yamamoto, K. (2000). Biomaterials, 21, 393–398.

    Article  CAS  Google Scholar 

  14. Xu, X., Yang, Q., Wang, Y., Yu, H., Chen, X., & Jing, X. (2006). European Polymer Journal, 42, 2081–2087.

    Article  CAS  Google Scholar 

  15. Jaiswal, S., Duffy, B., Jaiswal, A. K., Stobie, N., & McHale, P. (2010). International Journal of Antimicrobial Agents, 36, 280–283.

    Article  CAS  Google Scholar 

  16. Kora, A. J., Manjusha, R., & Arunachalam, J. (2009). Materials Science and Engineering C, 29, 2104–2109.

    Article  CAS  Google Scholar 

  17. Gupta, P., Bajpai, M., & Bajpai, S. K. (2008). The Journal of Cotton Science, 12, 280–286.

    CAS  Google Scholar 

  18. Travan, A., Pelillo, C., Donati, I., Marsich, E., Benincasa, M., Scarpa, T., Semeraro, S., Turco, G., Gennaro, R., & Paoletti, S. (2009). Biomacromolecules, 10, 1429–1435.

    Article  CAS  Google Scholar 

  19. Swarnkar, R. K., Singh, S. C., & Gopal, R. (2011). Bulletin of Materials Science, 34, 1363–1369.

    Article  CAS  Google Scholar 

  20. Singh, M. K., Agarwal, A., Gopal, R., Swarnkar, R. K., & Kotnala, R. K. (2011). Journal of Materials Chemistry, 21, 11074–11079.

    Article  CAS  Google Scholar 

  21. Nath, A., Das, A., Rangan, L., & Khare, A. (2012). Science of Advanced Materials, 4, 106–109.

    Article  CAS  Google Scholar 

  22. Williams, R. L., Doherty, P. J., Vince, D. G., Grashoff, G. J., & Williams, D. F. (1989). Criticism Review Biocompa, 5, 221–243.

    CAS  Google Scholar 

  23. Berger, T. J., Spadaro, J. A., Chapin, S. E., & Becker, R. O. (1976). Antimicrobial Agents and Chemotherapy, 9, 357–358.

    Article  CAS  Google Scholar 

  24. Zeng, H., Du, X. W., Singh, S. C., Kulinich, S. A., Yang, S., He, J., & Cai, W. (2012). Advanced Functional Materials, 22, 1333–1353.

    Article  Google Scholar 

  25. Feng, Q. L., Wu, J., Chen, G. Q., Cui, F. Z., Kim, T. N., & Kim, J. O. (2000). Journal of Biomedical Materials Research, 52, 662–668.

    Article  CAS  Google Scholar 

  26. Morones, J. R., Elechiguerra, J. L., Camacho, A., Holt, K., Kouri, J. B., Ramírez, J. T., & Yacaman, M. J. (2005). Nanotechnology, 16, 2346–2353.

    Article  CAS  Google Scholar 

  27. Hamouda, T., & Baker, J. R., Jr. (2000). Journal of Applied Microbiology, 89, 397–403.

    Article  CAS  Google Scholar 

  28. Sondi, I., & Salopek-Sondi, B. (2004). Journal of Colloid and Interface Science, 275, 177–182.

    Article  CAS  Google Scholar 

  29. Jones, C. M., & Hoek, E. M. V. (2010). Journal of Nanoparticle Research, 12, 1531–1551.

    Article  Google Scholar 

  30. Guzmán, M. G., Dille, J., & Godet, S. (2012). Nanomedicine, 8, 37–45.

    Article  Google Scholar 

  31. Perez, C., Paul, M., & Bazerque, P. (1990). Acta Biology Medicine Experiment, 15, 113–115.

    Google Scholar 

  32. Deore, S. L., & Khadabadi, S. S. (2008). Rasayan Journal of Chemistry, 1, 887–892.

    Google Scholar 

  33. Zhang, Y. J., Nagao, T., Tanaka, T., Yang, C. R., Okabe, H., & Kouno, I. (2004). Pharmaceutical Bulletin, 27, 251–255.

    Article  Google Scholar 

  34. Bonjar, G. H. S., & Nik, A. K. (2004). Asian Journal of Plant Sciences, 3, 61–64.

    Article  Google Scholar 

  35. Irith, W., Kai, H., & Robert, E. W. (2008). Nature Protocols, 3, 163–175.

    Article  Google Scholar 

  36. Bassam, A. S., Ghaleb, A., Dahood, A. S., Naser, J., & Kamel, A. (2006). Turkish Journal of Biology, 30, 195–198.

    Google Scholar 

  37. Song, H. Y., Ko, K. K., Oh, I. H., & Lee, B. T. (2006). European Cells Materials, 11, 58–59.

    Google Scholar 

  38. Tenover, F. C. (2006). American Journal of Medicine, 119, 3–10.

    Article  Google Scholar 

  39. Choi, O., Deng, K., Kim, N., Ross, L., Surampalli, R., & Hu, Z. (2008). Water Research, 42, 3066–3074.

    Article  CAS  Google Scholar 

  40. Raffi, M., Hussain, F., Bhatti, T., Akhter, J., Hameed, A., & Hasan, M. (2008). Journal of Materials Science and Technology, 24, 192–196.

    CAS  Google Scholar 

  41. Gibbins, B., & Warner, L. (2005). Medicine Device Diagnostic Industry Magazine, 1, 1–2.

    Google Scholar 

  42. Russell, A. D., & Hugo, W. B. (1994). Progress in Medicinal Chemistry, 31, 351–370.

    Article  CAS  Google Scholar 

  43. Dibrov, P., Dzioba, J., Gosink, K. K., & Hase, C. C. (2002). Antimicrobial Agents and Chemotherapy, 46, 2668–2670.

    Article  CAS  Google Scholar 

  44. Holt, K. B., & Bard, A. J. (2005). Biochemistry, 44, 13214–13223.

    Article  CAS  Google Scholar 

  45. Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., & Dash, D. (2007). Nanotechnology, 18(225103), 9.

    Google Scholar 

  46. Rai, M., Yadav, A., & Gade, A. (2009). Biotechnology Advances, 27, 76–83.

    Article  CAS  Google Scholar 

  47. Carlson, C., Hussain, S. M., Schrand, A. M., Braydich-Stolle, L. K., Hess, K. L., Jones, R. L., & Schlager, J. J. (2008). Journal of Physical Chemistry B, 112, 13608–13619.

    Article  CAS  Google Scholar 

  48. Nel, A., Xia, T., Madler, L., & Li, N. (2006). Science, 311, 622–627.

    Article  CAS  Google Scholar 

  49. Mendis, E., Rajapakse, N., Byun, H., & Kim, S. (2005). Life Sciences, 77, 2166–2178.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Dr. N. P. Lalla of UGC-DAE CSR, Indore, for TEM facility. Authors R. K. Swarnkar and R. Gopal are thankful to the Defense Research and Development Organization (DRDO), New Delhi, for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jitendra Kumar Pandey or Manish Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, J.K., Swarnkar, R.K., Soumya, K.K. et al. Silver Nanoparticles Synthesized by Pulsed Laser Ablation: as a Potent Antibacterial Agent for Human Enteropathogenic Gram-Positive and Gram-Negative Bacterial Strains. Appl Biochem Biotechnol 174, 1021–1031 (2014). https://doi.org/10.1007/s12010-014-0934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-014-0934-y

Keywords

Navigation