Skip to main content
Log in

Acidic Proteases from Monterey Sardine (Sardinops sagax caerulea) Immobilized on Shrimp Waste Chitin and Chitosan Supports: Searching for a By-product Catalytic System

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Solid wastes generated from the seafood industry represent an important environmental pollutant; therefore, utilization of those wastes for the development of processing biochemical tools could be an attractive and clean solution for the seafood industry. This study reports the immobilization of semi-purified acidic proteases from Monterey sardine stomachs onto chitin and chitosan materials extracted from shrimp head waste. Several supports (chitosan beads, chitosan flakes, and partially deacetylated flakes) were activated either with genipin or Na-tripolyphosphate and evaluated as a mean to immobilize acidic proteases. The protein load varied within the 67–91 % range on different supports. The immobilization systems based on chitosan beads achieved the highest protein loads but showed the lowest retained catalytic activities. The best catalytic behavior was obtained using partially deacetylated chitin flakes activated either with genipin or Na-tripolyphosphate. According to results, the immobilization matrix structure, as well as acetylation degree of chitin–chitosan used, has considerable influence on the catalytic behavior of immobilized proteases. Partially deacetylated chitin flakes represent a suitable option as support for enzyme immobilization because its preparation requires fewer steps than other supports. Two abundant seafood by-products were used to obtain a catalytic system with enough proteolytic activity to be considered for biotechnological applications in diverse fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brady, D., & Jordaan, J. (2009). Biotechnology Letter, 31, 1639–1650.

    Article  CAS  Google Scholar 

  2. Altun, G. D., & Cetinus, S. A. (2007). Food Chemistry, 100, 964–971.

    Article  CAS  Google Scholar 

  3. Phanturat, P., Benjakul, S., Visessanguan, W., & Roytrakul, S. (2010). LWT- Food Science and Technology, 43, 86–97.

    Article  CAS  Google Scholar 

  4. Khaled, H. B., Ghorbel-Bellaaj, O., Hmidet, N., Jellouli, K., Ali, N. E. H., Ghorbel, S., et al. (2011). Food Chemistry, 128, 847–853.

    Article  Google Scholar 

  5. Castillo-Yañez, F. J., Pacheco-Aguilar, R., Garcia-Carreño, F. L., & Del-Toro, M. A. (2004). Food Chemistry, 85, 343–350.

    Article  Google Scholar 

  6. Singh, A. N., Suthar, N., SINGH, S., & Dubey, V. K. (2011). Journal Agriculture Food and Chemistry, 59, 6256–6262.

    Article  CAS  Google Scholar 

  7. Kılınç, D. A., Teke, M., Önal, S., & Telefoncu, A. (2006). Preparative Biochemistry and Biotechnology, 36, 153–163.

    Article  Google Scholar 

  8. Krajewska, B. (2004). Enzyme and Microbial Technology, 35, 126–139.

    Article  CAS  Google Scholar 

  9. Chiou, S. H., Hung, T. C., Giridhar, R., & Wu, W. T. (2007). Preparative Biochemistry and Biotechnology, 37, 265–275.

    Article  CAS  Google Scholar 

  10. Wang, W., Jiang, Y., Zhou, L., & Gao, J. (2011). Applied Biochemistry and Biotechnology, 164, 561–572.

    Article  CAS  Google Scholar 

  11. Sangeetha, K., & Emilia, A. T. (2008). Journal of Applied Polymer Science, 107, 2899–2908.

    Article  CAS  Google Scholar 

  12. He, S., Franco, C., & Zhang, W. (2013). Food Research International, 50, 289–297.

    Article  CAS  Google Scholar 

  13. Morrissey, M. (2001) Book of abstracts, 2001 IFT Annual Meeting. New Orleans, USA

  14. Arvanitoyannis, I. S., & Kassaveti, A. (2007). International Journal of Food Science and Technology, 43, 726–745.

    Google Scholar 

  15. Dıaz-Lopez, M., Moyano-Lopez, F. J., Alarcon-Lopez, F. J., Garcia-Carreño, F. L., & NavarretedelToro, M. (1998). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 121, 369–377.

    Article  Google Scholar 

  16. Stauffer, C. (1989). Enzyme assays for food scientists. New York: Van Nostrand Reinhold.

    Google Scholar 

  17. García Carreño, F. L., & Haard, N. F. (1993). Journal of Food Biochemistry, 17, 97–113.

    Article  Google Scholar 

  18. Laemmli, U. K. (1970). Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  19. Beaney, P., Lizardi Mendoza, J., & Healy, M. (2005). Journal of Chemical Technology and Biotechnology, 80, 145–150.

    Article  CAS  Google Scholar 

  20. Brugnerotto, J., Lizardi, J., Goycoolea, F., Argüelles-Monal, W., Desbrieres, J., & Rinaudo, M. (2001). Polymer, 42, 3569–3580.

    Article  CAS  Google Scholar 

  21. Bradford, M. (1976). Analytical Biochemistry, 72, 248–25.

    Article  CAS  Google Scholar 

  22. Novick, S. J., & Rozzell, J. D. (2005). Immobilization of enzymes by covalent attachment. In J. L. Barredo (Ed.), Microbial enzymes and biotransformations (pp. 247–272). Totowa: Humana.

    Chapter  Google Scholar 

  23. Magnin, D., Dumitriu, S., & Chornet, E. (2003). Journal of Bioactive and Compatible Polymers, 18, 355–373.

    Article  CAS  Google Scholar 

  24. Gildberg, A. (1988). Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 91, 425–435.

    Article  CAS  Google Scholar 

  25. Villalba-Villalba, A. G., Pacheco-Aguilar, R., Ramirez-Suarez, J. C., Valenzuela-Soto, E. M., Castillo-Yáñez, F. J., & Márquez-Ríos, E. (2011). Fisheries Science, 77, 1–9.

    Article  Google Scholar 

  26. Benkhelifa, H., Bengoa, C., Larre, C., Guibal, E., Popineau, Y., & Legrand, J. (2005). Process Biochemistry, 40, 461–467.

    Article  CAS  Google Scholar 

  27. Kilinc, A., Onal, S., & Telefoncu, A. (2002). Turkish Journal of Chemistry, 26, 311–316.

    CAS  Google Scholar 

  28. Jiang, D. S., Long, S. Y., Huang, J., Xiao, H. Y., & Zhou, J. Y. (2005). Biochemical Engineering Journal, 25, 15–23.

    Article  Google Scholar 

  29. Dhananjay, S., & Mulimani, V. (2008). Journal of Food Biochemistry, 32, 521–535.

    Article  CAS  Google Scholar 

  30. Kasaai, M. R. (2010). Carbohydrate Polymers, 79, 801–810.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Karla Martinez Robinson for her technical assistance. Jesus Aaron Salazar-Leyva was on a graduate leave supported by both the Universidad Politecnica de Sinaloa and the Consejo Nacional de Ciencia y Tecnologia of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramon Pacheco-Aguilar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Salazar-Leyva, J.A., Lizardi-Mendoza, J., Ramirez-Suarez, J.C. et al. Acidic Proteases from Monterey Sardine (Sardinops sagax caerulea) Immobilized on Shrimp Waste Chitin and Chitosan Supports: Searching for a By-product Catalytic System. Appl Biochem Biotechnol 171, 795–805 (2013). https://doi.org/10.1007/s12010-013-0407-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0407-8

Keywords

Navigation