Skip to main content

Advertisement

Log in

Candida Biofilm Disrupting Ability of Di-rhamnolipid (RL-2) Produced from Pseudomonas aeruginosa DSVP20

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Biosurfactant produced from Pseudomonas aeruginosa DSVP20 was evaluated for its potential to disrupt Candida albicans biofilm formed on polystyrene (PS) surfaces in this investigation. P. aeruginosa DSVP20 exhibited optimum production of biosurfactant (5.8 g L−1) after 96 h of growth with an ability to reduce surface tension of the aqueous solution from 72 to 28 mN m−1. Analysis of purified biosurfactant with FT-IR, 1H and 13C NMR and MALDI-TOF MS revealed it to be di-rhamnolipid (RL-2) in nature. Biofilm disrupting ability of RL-2 (0.16 mg mL−1) on Candida cells when checked using XTT reduction assay revealed that about 50 % of the cells remain adhered to 96-well plate after 2 h of treatment, while up to 90 % reduction in pre-formed C. albicans biofilm on PS surface was observed with RL-2 (5.0 mg mL−1) in a dose-dependent manner. Microscopic analyses (SEM and CLSM) further confirm the influence of RL-2 on disruption of Candida biofilm extracellular matrix on PS surface which can be exploited as a potential alternative to the available conventional therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yu, H., & Huang, G. H. (2011). Soil Sediment Contamination, 20, 274–278.

    Article  CAS  Google Scholar 

  2. Nitschke, M., & Costa, S. (2007). Trends in Food Science and Technology, 18, 252–259.

    Article  CAS  Google Scholar 

  3. Dusane, D. H., Nancharaiah, Y. V., Zinjarde, S. S., & Venugopalan, V. P. (2010). Colloids and Surfaces. B, Biointerfaces, 81, 242–248.

    Article  CAS  Google Scholar 

  4. Irie, Y., O’Toole, G. A., & Yuk, M. H. (2005). FEMS Microbiology Letters, 250, 237–243.

    Article  CAS  Google Scholar 

  5. Rodrigues, L. R., Banat, I. M., van der Mei, H. C., Teixeira, J. A., & Oliveira, R. (2006). Journal of Applied Microbiology, 100, 470–480.

    Article  CAS  Google Scholar 

  6. Stanghellini, M. E., & Miller, R. M. (1997). Plant Disease, 81, 4–12.

    Article  CAS  Google Scholar 

  7. Wang, X., Gong, L., Liang, S., Han, X., Zhu, C., & Li, Y. (2005). Harmful Algae, 4, 433–443.

    Article  CAS  Google Scholar 

  8. de Araujo, L. V., Abreu, F., Lins, U., de Melo Santa Anna, L. M., Nitschke, M., & Freire, D. M. G. (2011). Food Research International, 44, 481–488.

    Article  Google Scholar 

  9. Cao, Y., Dai, B., Wang, Y., Huang, S., Xu, Y., Cao, Y., et al. (2008). International Journal of Antimicrobial Agents, 32, 73–77.

    Article  CAS  Google Scholar 

  10. An, M., Shen, H., Cao, Y. B., Zhang, J. D., Cai, Y., Wang, R., et al. (2009). International Journal of Antimicrobial Agents, 33, 258–263.

    Article  CAS  Google Scholar 

  11. Chandra, J., Kuhn, D. M., Mukherjee, P. K., Hoyer, L. L., McCormick, T., & Ghannoum, M. A. (2001). Journal of Bacteriology, 183, 5385–5394.

    Article  CAS  Google Scholar 

  12. Agarwal, V., Lal, P., & Pruthi, V. (2008). Mycopathologia, 165, 13–19.

    Article  CAS  Google Scholar 

  13. Jain, N., Kohli, R., Cook, E., Gialanella, P., Chang, T., & Fries, B. C. (2007). Applied and Environmental Microbiology, 73, 1697–1703.

    Article  CAS  Google Scholar 

  14. Bruzual, I., Riggle, P., Hadley, S., & Kumamoto, C. A. (2007). Journal of Antimicrobial Chemotherapy, 59, 441–450.

    Article  CAS  Google Scholar 

  15. Law, D., Moore, C. B., Wardle, H. M., Ganguli, L. A., Keaney, M. G. L., & Denning, D. W. (1994). Journal of Antimicrobial Chemotherapy, 34, 659–668.

    Article  CAS  Google Scholar 

  16. Banat, I. M., Makkar, R. S., & Cameotra, S. S. (2000). Applied Microbiology and Biotechnology, 53, 495–508.

    Article  CAS  Google Scholar 

  17. Rivardo, F., Turner, R. J., Allegrone, G., Ceri, H., & Martinotti, M. G. (2009). Applied Microbiology and Biotechnology, 83, 541–553.

    Article  CAS  Google Scholar 

  18. Pruthi, V., & Cameotra, S. S. (2003). Journal of Surfactants and Detergents, 6, 65–68.

    Article  CAS  Google Scholar 

  19. Plaza, G., Zjawiony, I., & Banat, I. (2006). Journal of Petroleum Science and Engineering, 50, 71–77.

    Article  CAS  Google Scholar 

  20. Chen, S. Y., Wei, Y. H., & Chang, J. S. (2007). Applied Microbiology and Biotechnology, 76, 67–74.

    Article  CAS  Google Scholar 

  21. Caiazza, N. C., Shanks, R. M. Q., & O’Toole, G. A. (2005). Journal of Bacteriology, 187, 7351–7361.

    Article  CAS  Google Scholar 

  22. Pemmaraju, S. C., Sharma, D., Singh, N., Panwar, R., Cameotra, S. S., & Pruthi, V. (2012). Applied Biochemistry and Biotechnology. doi:10.1007/s12010-012-9613-z.

  23. Cameotra, S. S., & Singh, P. (2009). Microbial Cell Factories, 8, 16.

    Article  Google Scholar 

  24. Sneath, P. H. A., Mair, N. S., & Sharpe, M. E. (1986). Bergey’s Manual of Systematic Bacteriology Vol. 2 (pp. 999–1436). Baltimore: Williams & Wilkins.

    Google Scholar 

  25. De Clerck, E., Rodrıguez-Dıaz, M., Vanhoutte, T., Heyrman, J., Logan, N. A., & De Vos, P. (2004). International Journal of Systematic and Evolutionary Microbiology, 54, 941–946.

    Article  Google Scholar 

  26. Pitcher, D. G., Saunders, N. A., & Owen, R. J. (1989). Letters in Applied Microbiology, 8, 151–156.

    Article  CAS  Google Scholar 

  27. Christova, N., Tuleva, B., Lalchev, Z., Jordanova, A., & Jordanov, B. (2004). Zeitschrift für Naturforschung, 59c, 70–74.

    Google Scholar 

  28. Chandrasekaran, E. V., & Bemiller, J. N. (1980). In R. L. Whistler & M. L. Wolfrom (Eds.), Methods in carbohydrate chemistry, constituent analysis of glycosaminoglycans (pp. 89–96). New York: Academic Press.

    Google Scholar 

  29. Worakitsiri, P., Pornsunthorntaweea, O., Thanpitcha, T., Chavadej, S., Weder, C., & Rujiravanit, R. (2011). Synthetic Metals, 161, 298–306.

    Article  CAS  Google Scholar 

  30. Thanomsub, B., Pumeechockchai, W., Limtrakul, A., Arunrattiyakorn, P., Petchleelaha, W., Nitoda, T., et al. (2006). Bioresource Technology, 97, 2457–2461.

    Article  CAS  Google Scholar 

  31. Silva, W. J., Seneviratne, J., Parahitiyawa, N., Rosa, E. A., Samaranayake, L. P., & Cury, A. A. (2008). Brazilian Dental Journal, 19, 364–369.

    Google Scholar 

  32. Lal, P., Sharma, D., Pruthi, P., & Pruthi, V. (2010). Journal of Applied Microbiology, 109, 128–136.

    Google Scholar 

  33. Felsenstein, J. (1989). PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics, 5, 164–166.

  34. Parreira, A. G., Tótola, M. R., Jham, G. N., Da Silva, S. L., & Borges, A. C. (2011). British Biotechnology Journal, 1, 18–28.

    Google Scholar 

  35. Mishra, S., Jyot, J., Kuhad, R. C., & Lal, B. (2001). Applied and Environmental Microbiology, 67, 1675–1681.

    Article  CAS  Google Scholar 

  36. Hazra, C., Kundu, D., Ghosh, P., Joshi, S., Dandia, N., & Chaudharia, A. (2011). Journal of Chemical Technology and Biotechnology, 86, 185–198.

    Article  CAS  Google Scholar 

  37. Wei, Y., Cheng, C., Chien, C., & Wan, H. (2008). Process Biochemistry, 43, 69–77.

    Article  Google Scholar 

  38. Abdel-Mawgoud, A. M., Aboulwafa, M., & Hassouna, N. (2009). Applied Biochemistry and Biotechnology, 157, 329–345.

    Article  Google Scholar 

  39. Bharali, P., & Konwar, B. K. (2011). Applied Biochemistry and Biotechnology, 164, 1444–1460.

    Article  CAS  Google Scholar 

  40. Pornsunthorntawee, O., Maksung, S., Huayyai, O., Rujiravanit, R., & Chavadej, S. (2009). Bioresource Technology, 100, 812–818.

    Article  CAS  Google Scholar 

  41. Deziel, E., Lépine, F., Milot, S., & Villemur, R. (2000). Biochimica et Biophysica Acta, 1485, 145–152.

    Article  CAS  Google Scholar 

  42. Ganesh, A., & Lin, J. (2009). African Journal of Biotechnology, 8, 5847–5854.

    CAS  Google Scholar 

  43. Deziel, E., Lépine, F., Dennie, D., Boismenu, D., Mamer, O. A., & Villemur, R. (1999). Biochimica et Biophysica Acta, 1440, 244–252.

    Article  CAS  Google Scholar 

  44. Nitschke, M., Costa, S. G., Haddad, R., Goncalves, L. A., Eberlin, M. N., & Contiero, J. (2005). Biotechnology Progress, 21, 1562–1566.

    Article  CAS  Google Scholar 

  45. Soberon-Chavez, G., Lepine, F., & Deziel, E. (2005). Applied Microbiology and Biotechnology, 68, 718–725.

    Article  CAS  Google Scholar 

  46. Razaa, A. Z., Khana, M. S., Khalid, Z. M., & Rehmanb, A. (2006). Zeitschrift für Naturforschung, 61c, 87–94.

    Google Scholar 

  47. Nett, J. E., Guite, K. M., Ringeisen, A., Holoyda, K. A., & Andes, D. R. (2008). Antimicrobial Agents and Chemotherapy, 52, 3411–3413.

    Article  CAS  Google Scholar 

  48. Sotirova, A. V., Spasova, D. I., Galabova, D. N., Karpenko, E., & Shulga, A. (2010). Current Microbiology, 56, 639–644.

    Article  Google Scholar 

  49. Fracchia, L., Cavallo, M., Allegrone, G., & Martinotti, M. G. (2010). In A. Mendez-Vilas (Ed.), Current research technology and education topics in applied microbiology and microbial technology, vol. 2: A Lactobacillus-derived biosurfactant inhibits biofilm formation of human pathogenic Candida albicans biofilm producers. Spain: Formatex.

    Google Scholar 

  50. Davey, M. E., Caiazza, N. C., & OToole, G. A. (2003). Journal of Bacteriology, 185, 1027–1036.

    Article  CAS  Google Scholar 

  51. Carrillo, C., Teruel, J., Aranda, F., & Ortiz, A. (2003). Biochimica et Biophysica Acta, 1611, 91–97.

    Article  CAS  Google Scholar 

  52. Borecka-Melkusova, S., & Bujadakova, H. (2008). Canadian Journal of Microbiology, 54, 718–724.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Pruthi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, N., Pemmaraju, S.C., Pruthi, P.A. et al. Candida Biofilm Disrupting Ability of Di-rhamnolipid (RL-2) Produced from Pseudomonas aeruginosa DSVP20. Appl Biochem Biotechnol 169, 2374–2391 (2013). https://doi.org/10.1007/s12010-013-0149-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0149-7

Keywords

Navigation