Skip to main content
Log in

Biodiesel Residual Glycerol Metabolism by Klebsiella pneumoniae: Pool of Metabolites Under Anaerobiosis and Oxygen Limitation as a Function of Feeding Rates

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The metabolism of residual glycerol from biodiesel synthesis by Klebsiella pneumoniae BLh-1 was investigated in this study. Batch and fed-batch cultivations were performed in bioreactors under anaerobic and oxygen limitation conditions. Results of batch cultivations showed that the main product was 1,3-propanediol (1,3-PD) in both conditions, although the higher yields and productivities (0.46 mol mol−1 glycerol and 1.22 g L−1 h−1, respectively) were obtained under anaerobic condition. Large amounts of ethanol were also produced under batch anaerobic condition, peaking at 12.30 g L−1. Batch cultivations under oxygen limitation were characterized by faster growth kinetics, with higher biomass production but lower conversions of glycerol into 1,3-PD, with yields and productivities of 0.33 mol mol−1 glycerol and 0.99 g L−1 h−1, respectively. The fed-batch cultivations were carried out in order to investigate the effects of feeding of raw glycerol on cells. Fed-batch under anaerobiosis showed that 1,3-PD and ethanol concentrations increased with the feeding rate, with maximal productions of 26.12 and 19.2 g L−1, respectively. The oxygen limitation conditions diverted the bacterium metabolism to an elevated lactic acid formation, reaching 59 g L−1 in higher feeding rates of glycerol, but lowering the production of ethanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karinen, R. S., & Krause, A. I. O. (2006). New biocomponents from glycerol. Applied Catalysis, 306, 128–136.

    Article  CAS  Google Scholar 

  2. Wang, Z., Zhuge, J., Fang, H., & Prior, B. A. (2001). Glycerol production by microbial fermentation: A review. Biotechnology Advances, 19, 201–222.

    Article  CAS  Google Scholar 

  3. Homann, T., Tag, C., Biebl, H., Deckwer, W. D., & Schink, B. (1990). Fermentation of glycerol to 1,3-propanediol by Klebsiella and Citrobacter strains. Applied Microbiology and Biotechnology, 33, 121–126.

    Article  CAS  Google Scholar 

  4. Daniel, R., Boenigk, R., & Gottschalk, R. (1995). Purification of 1,3-Propanediol Dehydrogenase from Citrobacter freundii and Cloning, Sequencing, and Overexpression of the Corresponding Gene in Escherichia coli. Journal of Biotechnology, 177, 2151–2156.

    CAS  Google Scholar 

  5. Forage, R. G., & Lin, E. C. C. (1982). DHA system mediating aerobic and anaerobic dissimilation of glycerol in Klebsiella pneumoniae NCIB 418. Journal of Bacteriology, 151, 591–599.

    Google Scholar 

  6. Biebl, H., Zeng, A. P., Menzel, K., & Deckwer, W. D. (1998). Fermentation of glycerol to 1,3-propanediol and 2,3-butanediol by Klebsiella pneumoniae. Applied Microbiology and Biotechnology, 50, 24–29.

    Article  CAS  Google Scholar 

  7. Németh, A., Kupcsulik, B., & Sevella, B. (2003). 1,3-Propanediol oxidoreductase production with Klebsiella pneumoniae DSM2026. World Journal of Microbiology and Biotechnology, 19, 659–663.

    Article  Google Scholar 

  8. Biebl, H., Marten, S., Hippe, H., & Deckwer, W. D. (1992). Glycerol conversion to 1,3-Propanediol by newly isolated clostridia. Applied Microbiology and Biotechnology, 36, 592–597.

    Article  CAS  Google Scholar 

  9. Himmi, E. H., Bories, A., & Barbirato, F. (1999). Nutrient requirements for glycerol conversion to 1,3-propanediol by Clostridium butyricum. Bioresource Technology, 67, 123–128.

    Article  CAS  Google Scholar 

  10. Talarico, T., & Dobrogosz, W. J. (1990). Purification and Characterization of Glycerol Dehydratase from Lactobacillus reuteri. Applied and Environmental Microbiology, 56, 1195–1197.

    CAS  Google Scholar 

  11. Zheng, Z. M., Xu, Y. Z., Liu, H. J., Guo, N. N., Cai, Z., & Liu, D. H. (2008). Physiologic mechanisms of sequential products synthesis in 1,3-propanediol fed-batch Fermentation by Klebsiella pneumoniae. Biotechnology and Bioengineering, 100(5), 923–932.

    Google Scholar 

  12. Oh, B. R., Seo, J. W., Choi, M. G., & Kim, C. H. (2008). Optimization of culture conditions for 1,3-propanediol production from crude glycerol by Klebsiella pneumoniae using response surface methodology. Biotechnology and Bioprocess Engineering, 13, 666–670.

    Article  CAS  Google Scholar 

  13. Cheng, K. K., Liu, D. H., Sun, Y., & Liu, W. B. (2004). 1,3-propanediol production by Klebsiella pneumoniae under different aeration strategies. Biotechnology Letters, 26(11), 911–915.

    Article  CAS  Google Scholar 

  14. Zeng, A. P., & Biebl, H. (2002). Bulk Chemicals from biotechnology: the case of 1,3-propanediol production and the new trends. Advances in Biochemical Engineering Biotechnology, 74, 239–259.

    CAS  Google Scholar 

  15. Sauer, M., Marx, H., & Mattanovich, D. (2008). Microbial production of 1,3-propanediol. Recent Patents on Biotechnology, 2, 191–197.

    Article  CAS  Google Scholar 

  16. Huang, H., Gong, C. S., & Tsao, G. T. (2002). Production of 1,3-Propanediol by Klebsiella pneumoniae. Applied Biochemical Biotechnology, 98, 687–698.

    Article  Google Scholar 

  17. Zhang, Q., & Xiu, Z. (2009). Metabolic pathway analysis of glycerol metabolism in Klebsiella pneumoniae. Incorporating oxygen regulatory system. Biotechnology Progress, 25, 103–115.

    Article  Google Scholar 

  18. Chen, X., Xiu, Z., Wang, J., Zhang, D., & Xu, P. (2003). Microbial fed-batch production of 1,3-propanediol by Klebsiella pneumoniae under oxygen limitation conditions. Applied Microbiology and Biotechnology, 63, 143–146.

    Article  CAS  Google Scholar 

  19. Rossi, D. M., Souza, E. A., Flôres, S. H., & Ayub, M. A. Z. (2012). Bioconversion of residual glycerol from biodiesel synthesis into 1,3-propanediol and ethanol by isolated bacteria from environmental consortia. Renewable Energy, 39, 223–227.

    Article  CAS  Google Scholar 

  20. Xiu, Z. L., Song, B. H., Wang, Z. T., Sun, L. H., Feng, E. M., & Zeng, A. P. (2004). Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures. Journal Biochemical Engineering, 19, 189–197.

    Article  CAS  Google Scholar 

  21. Zhang, Y., Li, Y., Du, C., Liu, M., & Cao, Z. (2006). Inactivation of aldehyde dehydrogenase: A key factor for engineering 1,3-propanediol production by Klebsiella pneumoniae. Metabolic Engineering, 8, 578–586.

    Article  CAS  Google Scholar 

  22. Cheng, K. K., Liu, H. J., & Liu, D. (2005). Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotechnology Letters, 27, 19–22.

    Article  CAS  Google Scholar 

  23. Costa, J. B., Rossi, D. M., Souza, E. A., Samios, D., Bregalda, F., Peralba, M. C. R., et al. (2011). The optimization of biohydrogen production by bacteria using residual glycerol from biodiesel synthesis. Journal of Environmental Science and Health-Part A, 46, 1461–1468.

    CAS  Google Scholar 

  24. Zhang, Q., Teng, H., Sun, Y., Xiu, Z., & Zeng, A. (2008). Metabolic flux and robustness analysis of glycerol metabolism in Klebsiella pneumoniae. Bioprocess and Biosystems Engineering, 31, 127–130.

    Article  CAS  Google Scholar 

  25. Menzel, K., Zeng, A. P., & Deckwer, D. W. (1997). Enzymatic evidence for an involvement of pyruvate dehydrogenase in the anaerobic glycerol metabolism of Klebsiella pneumoniae. Journal of Biotechnology, 56, 135–142.

    Article  CAS  Google Scholar 

  26. Yang, G., Tian, J., & Li, J. (2007). Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under miroaerobic conditions. Applied Microbiology and Biotechnology, 73, 1017–1024.

    Article  CAS  Google Scholar 

  27. Cheng, K. K., Zhang, J. A., Liu, D. H., Sun, Y., Yang, M. D., & Xu, J. M. (2006). Production of 1,3-propanediol by Klebsiella pneumoniae from glycerol broth. Biotechnology Letters, 28, 1817–1821.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The authors wish to thank CNPQ, CAPES, and FAPERGS (Brazil) for the financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Antônio Záchia Ayub.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossi, D.M., de Souza, E.A. & Ayub, M.A.Z. Biodiesel Residual Glycerol Metabolism by Klebsiella pneumoniae: Pool of Metabolites Under Anaerobiosis and Oxygen Limitation as a Function of Feeding Rates. Appl Biochem Biotechnol 169, 1952–1964 (2013). https://doi.org/10.1007/s12010-013-0114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0114-5

Keywords

Navigation