Skip to main content
Log in

Dietary Supplementation with Bovine Lactoferrampin–Lactoferricin Produced by Pichia pastoris Fed-batch Fermentation Affects Intestinal Microflora in Weaned Piglets

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This work is aimed at investigating the effects of recombinant bovine lactoferrampin–lactoferricin (LFA-LFC) instead of chlortetracycline on intestinal microflora in weaned piglets. The high cost of peptide production from either native digestion or chemical synthesis limits the clinical application of antimicrobial peptides. The expression of recombinant peptides in yeast may be an effective alternative. In the current study, recombinant LFA-LFC was produced via fed-batch fermentation in recombinant strain Pichia pastoris (KM71) XS10. Uniform design U6(64) was used to optimize the fermentation conditions. The target peptide purified via cation-exchange and size-exclusion chromatography was added into the dietary of weaned piglets. After 21 days, the Lactobacilli, Bifidobacteria, and Enterobacteria in the chyme of the gut were quantified using real-time polymerase chain reaction. The results showed that approximately 82 mg of LFA-LFC was secreted into 1 L of medium under optimized conditions. Moreover, purified peptide showed strong antimicrobial activities against all the tested microorganisms. Compared with the control group, the LFA-LFC group increased the amount of Lactobacilli and Bifidobacteria (P < 0.05) in the chyme of the stomach, duodenum, jejunum, ileum, colon, and caecum. These results show that dietary supplementation with LFA-LFC can affect intestinal microflora in weaned piglets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dibner, J. J., & Richards, J. D. (2005). Antibiotic growth promoters in agriculture: history and mode of action. Poultry Science, 84, 634–643.

    CAS  Google Scholar 

  2. Niewold, T. A. (2007). The nonantibiotic anti-Inflammatory effect of antimicrobial growth promoters, the real mode of action? a hypothesis. Poultry Science, 86, 605–609.

    CAS  Google Scholar 

  3. Wang, Y. Z., Shan, T. Z., Xua, Z. R., Feng, J., & Wang, Z. Q. (2007). Effects of the lactoferrin (LF) on the growth performance, intestinal microflora and morphology of weanling pigs. Animal Feed Science and Technology, 135, 263–272.

    Article  CAS  Google Scholar 

  4. De Haan, C. P., Kivistö, R., Hakkinen, M., Rautelin, H., & Hänninen, M. L. (2010). Decreasing trend of overlapping multilocus sequence types between human and chicken campylobacter jejuni Isolates over a decade in Finland. Applied and Environmental Microbiology, 76, 5228–5236.

    Article  Google Scholar 

  5. Van Cleef, B. A. G. L., Broens, E. M., Voss, A., Huijsdens, X. W., Züchner, L., Van Benthem, B. H. B., et al. (2010). High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in The Netherlands. Epidemiology and Infection, 138, 756–763.

    Article  Google Scholar 

  6. Tang, Z., Yin, Y., Zhang, Y., Huang, R., Sun, Z., Li, T., et al. (2009). Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal orphology in piglets weaned at age 21 d. British Journal of Nutrition, 101, 998–1005.

    Article  CAS  Google Scholar 

  7. Davis, M. E., Brown, D. C., Baker, A., Bos, K., Dirain, M. S., Halbrook, E., et al. (2007). Effect of direct-fed microbial and antibiotic supplementation on gastrointestinal microflora, mucin histochemical characterization, and immune populations of weanling pigs. Livestock Science, 108, 249–253.

    Article  Google Scholar 

  8. Kuwata, H., Yip, T. T., Yip, C. L., Tomita, M., & Hutchens, T. W. (1998). Bactericidal domain of lactoferrin: detection, quantitation, and characterization of lactoferricin in serum by SELDI affinity mass spectrometry. Biochemical and Biophysical Research Communications, 245, 764–773.

    Article  CAS  Google Scholar 

  9. Bolscher, J. G. M., Adão, R., Nazmi, K., van den Keybus, P. A. M., Van’t Hof, W., Nieuw Amerongen, A. V., et al. (2009). Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie, 91, 123–132.

    Article  CAS  Google Scholar 

  10. Tang, Z., Zhang, Y., Stewart, A. F., Geng, M., Tang, X., Tu, Q., et al. (2010). High-level expression, purification and antibacterial activity of bovine lactoferricin and lactoferrampin in Photorhabdus luminescens. Protein Expression and Purification, 73, 132–139.

    Article  CAS  Google Scholar 

  11. Tang, X. S., Tang, Z. R., Wang, S. P., Feng, Z. M., Zhou, D., Li, T. J., et al. (2012). Expression, purification, and antibacterial activity of bovine lactoferrampin- lactoferricin in Pichia pastoris. Applied Biochemistry and Biotechnology, 166, 640–651.

    Article  CAS  Google Scholar 

  12. Fu, J., Wenzel, S. C., Perlovan, O., Wang, J. P., Gross, F., Tang, Z. R., et al. (2008). Efficient transfer of two large secondary metabolite pathway gene clusters into heterologous hosts by transposition. Nucleic Acids Research, 36, 113–114.

    Article  Google Scholar 

  13. Hou, Z.-P., Wen-Jie, W., Zhi-qiang, L., Gang, L., Wolfgang, B., Souffrant, W. B., et al. (2011). Effect of Lactoferrincin B and Cecropin P1 against enterotoxigenic Escherichia coli in vitro. Journal of Food, Agriculture & Environment, 9, 271–274.

    Google Scholar 

  14. Wang, A., Wang, S., Shen, M., Chen, F., Zou, Z., Ran, X., et al. (2009). High level expression and purification of bioactive human alpha-defensin 5 mature peptide in Pichia pastoris. Applied Microbiology and Biotechnology, 84, 877–884.

    Article  CAS  Google Scholar 

  15. Dong, Z. Y., & Zhang, Y. Z. (2006). Molecular cloning and expression of yak (Bos grunniens) lactoferrin cDNA in Pichia pastoris. Biotechnology Letters, 28, 1285–1292.

    Article  CAS  Google Scholar 

  16. Sheng-Ping, W., Yang, L., Tang, X.-S., Cai, L.-C., Liu, G., Kong, X.-F., et al. (2011). Dietary supplementation with high-dose Bacillus subtilis or Lactobacillus reuteri modulates cellular and humoral immunities and improves performance in weaned piglets. Journal of Food, Agriculture & Environment, 9, 181–187.

    Google Scholar 

  17. Kong, X. F., Zhang, Y. Z., Yin, Y. L., Wu, G. Y., Zhou, H. J., Tan, Z. L., et al. (2009). Chinese Yam polysaccharide enhances growth performance and cellular immune response in weanling rats. Journal of the Science of Food and Agriculture, 89(12), 2039–2044.

    Article  CAS  Google Scholar 

  18. Gong, J. H., Si, W. D., Forster, R. J., Huang, R. L., Yu, H., Yin, Y. L., et al. (2007). 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiology Ecology, 59, 147–157.

    Article  CAS  Google Scholar 

  19. Fang, K. (1994). Uniform design and uniform design tables (in Chinese) (1st ed.). Beijing: Science Press.

    Google Scholar 

  20. Wang, J., Wong, E. S., Whitley, J. C., Li, J., Stringer, J. M., Short, K. R., et al. (2011). Ancient antimicrobial peptides kill antibiotic-resistant pathogens: Australian mammals provide new options. PLoS One, 6, e24030.

    Article  CAS  Google Scholar 

  21. Yao, K., Yin, Y. L., Chu, W. Y., Liu, Z. Q., Dun, D., Li, T. J., et al. (2008). Dietary Arginine Supplementation Increases mTOR Signaling Activity in Skeletal Muscle of Neonatal Pigs. Journal of Nutrition, 138, 867–872.

    CAS  Google Scholar 

  22. Deng, D., Yao, K., Chu, W. Y., Li, T. J., Huang, R. L., Yin, Y. L., et al. (2009). Impaired translation initiation activation and reduced protein synthesis in weaned piglets fed a low-protein diet. The Journal of Nutritional Biochemistry, 20, 544–552.

    Article  CAS  Google Scholar 

  23. Yin, Y. L., Baidoo, S. K., Schulze, H., & Simmins, P. H. (2001). Effect of supplementing diets containing hulless barley varieties having different levels of non-starch polysaccharides with β-glucanase and xylanase on the physiological status of gastrointestinal tract and nutrient digestibility of weaned pigs. Livestock Production Science, 71, 97–107.

    Article  Google Scholar 

  24. Huang, R. L., Yin, Y. L., Wu, G. Y., Zhang, Y. G., Li, T. J., Li, L. L., et al. (2005). Effect of dietary oligochitosan supplementation on ileal digestibility of nutrients and performance in broilers. Poultry Science, 84, 1383–1388.

    CAS  Google Scholar 

  25. He, Q., Huiru, T., Pingping, R., Xiangfeng, K., Guoyao, W., Yulong, Y., et al. (2011). Dietary Supplementation with L -Arginine Partially Counteracts Serum Metabonome Induced by Weaning Stress in Piglets. Journal of Proteome Research, 10(11), 5214–5221.

    Article  CAS  Google Scholar 

  26. Collier, C. T., Smiricky-Tjardes, M. R., Albin, D. M., Wubben, J. E., Gabert, V. M., Deplancke, B., et al. (2003). Molecular ecological analysis of porcine ileal microbiota responses to antimicrobial growth promoters. Journal of Animal Science, 81, 3035–3045.

    CAS  Google Scholar 

  27. Ventura, M., Reniero, R., & Zink, R. (2001). Specific identification and targeted characterization of Bifidobacterium lactis from different environmental isolates by a combined multiplex-PCR approach. Applied and Environmental Microbiology, 67, 2760–2765.

    Article  CAS  Google Scholar 

  28. Castillo, M., Martín-Orúe, S. M., Manzanilla, E. G., Badiola, I., Martín, M., & Gasa, J. (2006). Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Veterinary Microbiology, 114, 165–170.

    Article  CAS  Google Scholar 

  29. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  30. Fang, K. T. (1980). Uniform design. Ying Yong Shu Xue Xue Bao (in Chinese), 4, 363–372.

    Google Scholar 

  31. Zhang, W., Yu, X. J., & Yuan, Q. (1993). Uniform design: a new approach of designing fermentation media. Biotechnology Techniques, 7, 379–384.

    Article  CAS  Google Scholar 

  32. Li, J. F., Zhang, J., Zhang, Z., Kang, C. T., & Zhang, S. Q. (2011). SUMO mediating fusion expression of antimicrobial peptide CM4 from two joined genes in Escherichia coli. Current Microbiology, 62, 296–300.

    Article  CAS  Google Scholar 

  33. Jang, S. A., Sung, B. H., Cho, J. H., & Kim, S. C. (2009). Direct expression of antimicrobial peptides in an intact form by a translationally coupled two-cistron expression system. Applied and Environmental Microbiology, 75, 3980–3986.

    Article  CAS  Google Scholar 

  34. Marr, A. K., Jenssen, H., Moniri, M. R., Hancock, R. E., & Panté, N. (2009). Bovine lactoferrin and lactoferricin interfere with intracellular trafficking of Herpes simplex virus-1. Biochimie, 91, 160–164.

    Article  CAS  Google Scholar 

  35. Park, S. C., Park, Y., & Hahm, K. S. (2011). The role of antimicrobial peptides in preventing multidrug-resistant bacterial infections and biofilm formation. International Journal of Molecular Sciences, 12, 5971–5992.

    Article  CAS  Google Scholar 

  36. Leonard, S. G., Sweeney, T., Bahar, B., Lynch, B. P., & O'Doherty, J. V. (2011). Effects of dietary seaweed extract supplementation in sows and post-weaned pigs on performance, intestinal morphology, intestinal microflora and immune status. British Journal of Nutrition, 105, 688–699.

    Article  Google Scholar 

  37. Martín, R., Jiménez, E., Heilig, H., Fernández, L., Marín, M. L., Zoetendal, E. G., et al. (2009). Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Applied and Environmental Microbiology, 75, 965–969.

    Article  Google Scholar 

  38. Marisol, C., Susana, M., Martín, O., Edgar, G. M., Ignacio, B., Marga, M., et al. (2006). Quantification of total bacteria, enterobacteria and lactobacilli populations in pig digesta by real-time PCR. Veterinary Microbiology, 114, 165–170.

    Article  Google Scholar 

  39. Martin, J. K., & Todd, R. K. (2000). Genetic modification of intestinal lactobacilli and bifidobacteria. Current Issues in Molecular Biology, 2, 41–50.

    Google Scholar 

Download references

Acknowledgments

This work was jointly supported by the National Basic Research Program of China (2009CB118800), National Scientific and technology Key Project (2011BAD26B002-5), Knowledge Innovation Program of the Chinese Academy of Sciences (XMXX281177, KSCX2-EW-B-10, KSCX2-EW-G-16, and KZCX2-EW-QN411), and NSFC Project (30901041, 31072042, 31001016, 31101729, and 31101730).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Shao or Yu-Long Yin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, XS., Shao, H., Li, TJ. et al. Dietary Supplementation with Bovine Lactoferrampin–Lactoferricin Produced by Pichia pastoris Fed-batch Fermentation Affects Intestinal Microflora in Weaned Piglets. Appl Biochem Biotechnol 168, 887–898 (2012). https://doi.org/10.1007/s12010-012-9827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9827-0

Keywords

Navigation