Skip to main content

Advertisement

Log in

Nano-TiO2-Induced Apoptosis by Oxidative Stress-Mediated DNA Damage and Activation of p53 in Human Embryonic Kidney Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of the present study is to explore the mechanism of cytotoxic and genotoxic effects of TiO2 nanoparticles on human embryonic kidney (HEK-293) cells. Toxicity was evaluated using changes in various cellular parameters of HEK-293 cells like morphology, viability, metabolic activity, oxidative stress and apoptosis. Oxidative stress was measured by the level of reactive oxygen species (ROS), lipid peroxidation, superoxide dismutase, catalase and glutathione peroxidase. Apoptosis induced by nano-TiO2 was characterized by PI staining and DNA ladder assay. Furthermore, apoptotic proteins such as p53 and Bax were analysed by western blot. Our results indicate that nano-TiO2 induces cytotoxicity in a time- and dose-dependent manner. Oxidative stress and apoptosis were induced by exposure to nano-TiO2. Moreover, the expression of p53, Bax and caspase-3 were increased in a dose-dependent pattern. In conclusion, ROS-mediated oxidative stress, the activation of p53, Bax, caspase-3 and oxidative DNA damage are involved in the mechanistic pathways of nano-TiO2-induced apoptosis in HEK-293 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Aebi, H. E. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    Article  CAS  Google Scholar 

  2. Barnard, A. S. (2010). One-to-one comparison of sunscreen efficacy, aesthetics and potential nanotoxicity. Nature Nanotechnology, 5, 271–274.

    Article  CAS  Google Scholar 

  3. Bhattacharya, K., Davoren, M., Boertz, J., Schins, R., Hoffmann, E., & Dopp, E. (2009). Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Particle and Fibre Toxicology, 6, 17.

    Article  Google Scholar 

  4. Bradford, M. M. (1976). Rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  5. Cardaci, S., Filomeni, G., Rotilio, G., Ciriolo, M. R. (2008). Reactive oxygen species mediated p53 activation and apoptosis induced by sodium nitroprusside in SHSYSY cells. Mol Pharmacol, 74, 1234–1245.

    Google Scholar 

  6. Chen, J. M., Tan, M. G., Nemmar, A., Song, W. M., Dong, M., Zhang, G. L., & Li, Y. (2006). Quantification of extra pulmonary translocation of intratracheal-instilled particles in vivo in rats: effect of lipopolysaccharide. Toxicology, 222, 195–201.

    Article  CAS  Google Scholar 

  7. Chan, J., Ying, T., Guang, Y. F., Lin, L. X., Xu, S., Fan, X. Y., Huang, Y. Y., & Yang, Y. J. (2011). Cellular toxicity of TiO2 nanoparticles in anatase and rutile crystal phase. Biological Trace Element Research, 141, 3–15.

    Article  Google Scholar 

  8. Chowdhury, R., Chowdhury, S., Roychoudhury, P., Mandal C., Chaudhuri K. (2009). Arsenic induced apoptosis in malignant melanoma cells is enhanced by menadione through ROS generation, p38 signaling and p53 activation. Apoptosis, 14, 108–123.

    Google Scholar 

  9. Denizot, F., & Lang, R. (1986). Rapid colorimetric assay for cell growth and survival, modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. Journal of Immunological Methods, 89(2), 271–277.

    Article  CAS  Google Scholar 

  10. Donaldson, K., Stone, V., Gilmour, P. S., Brown, D. M., & Macnee, W. (2000). Ultrafine particles: mechanisms of lung injury. Philosophical Transactions of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 358, 2741–2749.

    Article  CAS  Google Scholar 

  11. Dreher, K. L. (2004). Health and environmental impact of nanotechnology: toxicological assessment of manufactured nanoparticles. Toxicological Sciences, 77(1), 3–5.

    Article  CAS  Google Scholar 

  12. Elbekai, R. H., El-Kadi, A. O. S. (2005). The role of oxidative stress in the modulation of aryl hydrocarbon receptor-regulated genes by As3+, Cd2+ and Cr6+. Free Radic Biol Med, 39, 1499–1511.

    Google Scholar 

  13. Florea, A. M., Splettstoesser, F., & Busselberg, D. (2007). Arsenic trioxide (As2O3) induced calcium signals and cytotoxicity in two human cell lines: SY-5Y neuroblastoma and 293 embryonic kidney (HEK). Toxicology and Applied Pharmacology, 220, 292–301.

    Article  CAS  Google Scholar 

  14. Foucaud, L., Wilson, M. R., Brown, D. M., & Stone, V. (2007). Measurement of reactive species production by nanoparticles prepared in biologically relevant media. Toxicology Letters, 174, 1–9.

    Article  CAS  Google Scholar 

  15. Galluzzi, L., Blomgren K., Kroemer G. (2009). Mitochondrial membrane permeabilization in neuronal injury. Nat Rev Neurosci, 10(7), 481–494.

    Google Scholar 

  16. Gelis, C., Girard, S., Mavon, A., Delverdier, M., Pailous, N., & Vicendo, P. (2003). Assessment of the skin photo-protective capacities of an organo-mineral broad spectrum sunblock on two ex vivo skin models. Photodermatology, Photoimmunology and Photomedicine, 19(5), 242–253.

    Article  CAS  Google Scholar 

  17. Gheshlaghi, Z. N., Riazi, G. H., Ahmadian, S., Ghafari, M., & Mahinpour, R. (2008). Toxicity and interaction of titanium dioxide nanoparticles with microtubule protein. Acta Biochimica et Biophysica Sinica, 40, 777–782.

    CAS  Google Scholar 

  18. Gojova, A., Guo, B., Kota, R. S., Rutledge, J. C., Kennedy, I. M., & Barakat, A. I. (2007). Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environmental Health Perspectives, 115, 403–409.

    Article  CAS  Google Scholar 

  19. Gurr, J., Wang, A. A. S., Chen, C., & Jan, K. (2005). Ultrafine titanium dioxide particles in the absence of photoactivation can induce oxidative damage to human bronchial epithelial cells. Toxicology, 213, 66–73.

    Article  CAS  Google Scholar 

  20. Hirakawa, K., Mori, M., Yoshida, M., Oikawa, S., & Kawanishi, S. (2004). Photo-irradiated titanium dioxide catalyzes site specific DNA damage via generation of hydrogen peroxide. Free Radical Research, 38(5), 439–447.

    Article  CAS  Google Scholar 

  21. Hirano, S., Kanno, S., & Furuyama, A. (2008). Multi-walled carbon nanotubes injure the plasma membrane of macrophages. Toxicology and Applied Pharmacology, 232, 244–251.

    Article  CAS  Google Scholar 

  22. Holly, A. K., St-Clair, D. K. (2009). Watching the watcher: Regulation of p53 by mitochondria. Future Oncol, 5(1), 117–130.

    Google Scholar 

  23. Hussain, S. M., Hess, K. L., Gearhart, J. M., Geiss, K. T., & Schlager, J. J. (2005). In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology In Vitro, 19, 975–983.

    Article  CAS  Google Scholar 

  24. Ishizawa, M., Kobayashi, Y., Miyamura, T., & Matsuura, S. (1991). Simple procedure of DNA isolation from human serum. Nucleic Acids Research, 19, 5792.

    Article  CAS  Google Scholar 

  25. Ji, L. L., Chen, Y., & Wang, Z. T. (2008). The toxic effect of pyrrolizidine alkaloid clivorine on the human embryonic kidney 293 cells and its primary mechanism. Experimental and Toxicologic Pathology, 60, 87–93.

    Article  CAS  Google Scholar 

  26. Kang, S. J., Kim, B. M., Lee, Y. J., & Chung, H. W. (2008). Titanium dioxide nanoparticles trigger p53-mediated damage response in peripheral blood lymphocytes. Environmental and Molecular Mutagenesis, 49, 399–405.

    Article  CAS  Google Scholar 

  27. Kleinman, M. T., Araujo, J. A., Nel, A., Sioutas, C., Campbell, A., Cong, P. Q., Li, H., & Bondy, S. C. (2008). Inhaled ultrafine particulate matter affects CNS inflammatory processes and may act via MAP kinase signaling pathways. Toxicology Letters, 178, 127–130.

    Article  CAS  Google Scholar 

  28. Kreyling, W. G., Semmler, M., Erbe, F., Mayer, P., Takenaka, S., Schulz, H., Oberdorster, G., & Ziesenis, A. (2002). Translocation of ultrafine insoluble iridium particles from lung epithelium to extrapulmonary organs is size dependent but very low. Journal of Toxicology and Environmental Health. Part A, 65, 1513–1530.

    Article  CAS  Google Scholar 

  29. Kulms, D., Zeise, E., Poppelmann, B., & Schwarz, T. (2002). DNA damage, death receptor activation and reactive oxygen species contribute to ultraviolet radiation induced apoptosis in an essential and independent way. Oncogene, 21, 5844–5851.

    Article  CAS  Google Scholar 

  30. Li, S. Q., Zhu, R. R., Zhu, H., Xue, M., Sun, X. Y., Yao, S. D., & Wang, S. L. (2008). Nanotoxicity of TiO2 nanoparticles to erythrocyte in vitro. Food and Chemical Toxicology, 46, 3626–3631.

    Article  CAS  Google Scholar 

  31. Lin, W. S., Huang, Y. W., Zhou, X. D., & Ma, Y. F. (2006). In vitro toxicity of silica nanoparticles in human lung cancer cells. Toxicology and Applied Pharmacology, 217, 252–259.

    Article  CAS  Google Scholar 

  32. Long, T. C., Tajuba, J., Sama, P., Saleh, N., Swartz, C., Parker, J., Hester, S., Lowry, G. V., & Veronesi, B. (2007). Nanosize titanium dioxide stimulates reactive oxygen species in brain microglia and damages neurons in vitro. Environmental Health Perspectives, 115, 1631–1637.

    Article  CAS  Google Scholar 

  33. Low, W. K., Tan, M. G., Sun, L., Chua, A. W., Goh, L. K., & Wang, D. Y. (2006). Dose-dependent radiation-induced apoptosis in a cochlear cell-line. Apoptosis, 11, 2127–2136.

    Article  Google Scholar 

  34. Marklund, S. L., & Marklund, G. (1974). Involvement of the superoxide anion radical in the autooxidation of pyrogallol and a convenient assay of superoxide dismutase. European Journal of Biochemistry, 47, 469–474.

    Article  CAS  Google Scholar 

  35. Markovic, Z., Todorovic-Markovic, B., Kleut, D., Nikolic, N., Vranjes-Djuric, S., Misirkic, M., Vucicevic, L., Janjetovic, K., Isakovic, A., Harhaji, L., Babic-Stojic, B., Dramicanin, M., & Trajkovic, V. (2007). The mechanism of cell-damaging reactive oxygen generation by colloidal fullerenes. Biomaterials, 28, 5437–5448.

    Article  CAS  Google Scholar 

  36. Medina, C., Santos-Martinez, M. J., Radomski, A., Corrigan, O. I., & Radomski, M. W. (2007). Nanoparticles: pharmacological and toxicological significance. British Journal of Pharmacology, 150, 552–558.

    Article  CAS  Google Scholar 

  37. Meena, R., Kesari, K. K., Rani, M., & Paulraj, R. (2012). Effect of hydroxyapatite nanoparticles on proliferation and apoptosis of human breast cancer cells (MCF-7). Journal of Nanoparticle Research, 14, 712.

    Article  Google Scholar 

  38. Mroz, R. M., Schins, R. P., Li, H., Jimenez, L. A., Drost, E. M., Holownia, A., MacNee, W., & Donaldson, K. (2008). Nanoparticle-driven DNA damage mimics irradiation related carcinogenesis pathways. European Respiratory Journal, 31, 241–251.

    Article  CAS  Google Scholar 

  39. Nel, A., Xia, T., Madler, L., & Li, N. (2006). Toxic potential of materials at the nanolevel. Science, 311, 622–627.

    Article  CAS  Google Scholar 

  40. Nemmar, A., Hoylaerts, M. F., Hoet, P. H., & Nemery, B. (2004). Possible mechanisms of the cardiovascular effects of inhaled particles: systemic translocation and prothrombotic effects. Toxicology Letters, 149, 243–253.

    Article  CAS  Google Scholar 

  41. Osano, E., Kishi, J., & Takahashi, Y. (2003). Phagocytosis of titanium particles and necrosis in TNF-alpha-resistant mouse sarcoma L929 cells. Toxicology In Vitro, 17, 41–47.

    Article  CAS  Google Scholar 

  42. Pan, Z., Lee, W., Slutsky, L., Clark, R. A., Pernodet, N., & Rafailovich, M. H. (2009). Adverse effects of titanium dioxide nanoparticles on human dermal fibroblasts and how to protect cells. Small, 5, 511–520.

    Article  CAS  Google Scholar 

  43. Park, B., Donaldson, K., Duffin, R., Tran, L., Kelly, F., Mudway, I., Morin, J. P., Guest, R., Jenkinson, P., Samaras, Z., Giannouli, M., Kouridis, H., & Martin, P. (2008a). Hazard and risk assessment of a nanoparticulate cerium oxide-based diesel fuel additive—a case study. Inhalation Toxicology, 20, 547–566.

    Article  CAS  Google Scholar 

  44. Park, E. J., Choi, J., Park, Y., & Park, K. (2008b). Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 1(2), 90–100.

    Article  Google Scholar 

  45. Paulraj, R., & Behari, J. (2006). Single strand DNA breaks in rat brain cells exposed to microwave radiation. Mutation Research, 596, 76–80.

    Article  CAS  Google Scholar 

  46. Pioletti, D. P., Takei, H., Kwon, S. Y., Wood, D., & Sung, K. L. (1999). The cytotoxic effect of titanium particles phagocytosed by osteoblasts. Journal of Biomedical Materials Research, 46, 399–407.

    Article  CAS  Google Scholar 

  47. Pommier, Y., Sordet, O., Antony, S., Hayward, R. L., & Kohn, K. W. (2004). Apoptosis defects and chemotherapy resistance: molecular interaction maps and networks. Oncogene, 23, 2934–2949.

    Article  CAS  Google Scholar 

  48. Riccardi, C., & Nicoletti, I. (2006). Analysis of apoptosis by propidium iodide staining and flow cytometry. Nature Protocols, 1, 1458–1461.

    Article  CAS  Google Scholar 

  49. Riedl, S. J., & Shi, Y. (2004). Molecular mechanisms of caspase regulation during apoptosis. Nature Reviews Molecular Cell Biology, 5, 897–907.

    Article  CAS  Google Scholar 

  50. Roduit, R., & Schorderet, D. F. (2008). MAP kinase pathways in UV-induced apoptosis of retinal pigment epithelium ARPE19 cells. Apoptosis, 13, 343–353.

    Article  CAS  Google Scholar 

  51. Sayes, C. M., Gobin, A. M., Ausman, K. D., Mendez, J., West, J. L., & Colvin, V. L. (2005). Nano-C60 cytotoxicity is due to lipid peroxidation. Biomaterials, 26, 7587–7595.

    Article  CAS  Google Scholar 

  52. Sun, D., Meng, T. T., Loong, H., & Hwa, T. J. (2004). Removal of natural organic matter from water using a nano-structured photocatalyst coupled with filtrating membrane. Water Science and Technology, 49, 103–110.

    CAS  Google Scholar 

  53. Varshney, R., & Kale, R. K. (1990). Effect of calmodulin antagonist on radiation-induced lipid peroxidation in microsomes. International Journal of Radiation Biology, 58, 733–743.

    Article  CAS  Google Scholar 

  54. Wang, J. J., Sanderson, B. J., & Wang, H. (2007). Cyto and geno-toxicity of ultrafine TiO2 particles in cultured human lymphoblastoid cells. Mutation Research, 628, 99–106.

    CAS  Google Scholar 

  55. Wang, M. L., Tuli, R., Manner, P. A., Sharkey, P. F., Hall, D. J., & Tuan, R. S. (2003). Direct and indirect induction of apoptosis in human mesenchymal stem cells in response to titanium particles. Journal of Orthopaedic Research, 21, 697–707.

    Article  CAS  Google Scholar 

  56. Xia, T. (2006). Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Letters, 6(8), 1794–1807.

    Article  CAS  Google Scholar 

  57. Xing, Y. X., Li, P., Miao, Y. X., Du, W., & Wang, C. B. (2008). Involvement of ROS/ASMase/JNK signalling pathway in inhibiting UVA-induced apoptosis of HaCaT cells by polypeptide from Chlamys farreri. Free Radical Research, 42, 12–19.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Advance Instrumentation Research Facility (AIRF), JNU New Delhi, for confocal microscopy, transmission electron microscopy, scanning electron microscopy and EDXRF instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulraj Rajamani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meena, R., Rani, M., Pal, R. et al. Nano-TiO2-Induced Apoptosis by Oxidative Stress-Mediated DNA Damage and Activation of p53 in Human Embryonic Kidney Cells. Appl Biochem Biotechnol 167, 791–808 (2012). https://doi.org/10.1007/s12010-012-9699-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9699-3

Keywords

Navigation