Skip to main content
Log in

Effect of Acid, Steam Explosion, and Size Reduction Pretreatments on Bio-oil Production from Sweetgum, Switchgrass, and Corn Stover

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil’s physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography–mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68–1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1 % H2SO4-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Agarwal, G. D., & Agarwal, A. K. (1999). TERI Information Monitor on Environmental Science, 4, 79–89.

    Google Scholar 

  2. Chum, H. L., & Overend, R. P. (2001). Fuel Processing Technology, 71, 187–195.

    Article  CAS  Google Scholar 

  3. USDA (2005) Biomass as feedstock for a bioenergy and bioproducts industry: The Technical Feasibility of Billion-Ton Annual Supply, Technical Report, U.S. Department of Agricultural Forestry Service, April 2005.

  4. Bridgwater, A. V., Meierb, D., & Radleinc, D. (1999). Organic Geochemistry, 30, 1479–1493.

    Article  CAS  Google Scholar 

  5. Bridgwater, A. V., Czernik, S., & Piskorz, J. (2001). Progress in thermochemical biomass conversation (pp. 977–997). Oxford: Blackwell Science.

    Book  Google Scholar 

  6. Bridgwater, A. V., Toft, A. J., & Brammer, J. G. (2002). Renewable Sustainable Energy Rev., 6, 181–246.

    Article  CAS  Google Scholar 

  7. Pattiya, A., James, O. T., & Bridgwater A. V. (2006). The 2nd Joint International Conference on Sustainable Energy and Environment Technology and Policy innovations, Bangkok, Thailand, pp. 21–23.

  8. Yang, Y., Sharma, S. R., Burns, J. C., & Cheng, J. (2009). Energy & Fuels, 23, 3759–3766.

    Article  CAS  Google Scholar 

  9. Murwanashyaka, J. N., Pakdel, H., & Roy, C. (2001). Purification Technology, 24, 15–165.

    Google Scholar 

  10. Garcia-Perez, M., Chaala, A., & Roy, C. (2002). Journal of Analytical and Applied Pyrolysis, 65, 111–136.

    Article  CAS  Google Scholar 

  11. Garcia-Perez, M., Chaala, A., & Roy, C. (2002). Journal of Analytical and Applied Pyrolysis, 81, 893–907.

    CAS  Google Scholar 

  12. Oasmaa, A., Kuoppala, E., Gust, S., & Solantausta, Y. (2003). Energy & Fuels, 17, 1–12.

    Article  CAS  Google Scholar 

  13. Oasmaa, A., Kuoppala, E., & Solantausta, Y. (2003). Energy & Fuels, 17, 433–443.

    Article  CAS  Google Scholar 

  14. Wang, H., Srinivasan, R., Yu, F., Steele P., Li Q., & Mitchell, B. (2011). Energy & Fuels, 25, 3758–3764.

    Google Scholar 

  15. Perlack, R., Wright, L., Turhollow, A., Graham, R., Stokes, B., & Erbach, D. (2005). U.S. Department of Energy Oak Ridge National Laboratory Report. 60 pp.

  16. Martin, E., Duke, J., Pelkki, M., Clausen, E. C., & Carrier, D. J. (2010). Applied Biochemistry and Biotechnology, 162, 1660–1668.

    Article  CAS  Google Scholar 

  17. Samuel, B. M., & Lynn, A. K. (2005). Biomass and Bioenergy, 28, 515–535.

    Article  Google Scholar 

  18. John, S., Andy, A., Keith, P., Kendrick, K., John, B., Marie, W., & Richard, N. (2003). Journal of Industrial Ecology, 7, 117–146.

    Article  Google Scholar 

  19. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., et al. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory analytical procedure (LAP). National Renewable Energy Laboratory (NREL).

  20. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of ash in biomass. Laboratory analytical procedure (LAP). National Renewable Energy Laboratory (NREL).

  21. Ingram, L., Mohan, D., Steele, P., Strobel, D., Mitchell, B., Mohammad, J., & Cantrell, K. (2008). Energy & Fuels, 22, 614–625.

    Article  CAS  Google Scholar 

  22. ASTM D1744-92. Standard test method for determination of water in liquid petroleum products by Karl Fischer reagent. ASTM International, West Conshohocken, PA (withdrawn 2000).

  23. Hassan, M. E., Steele, P., & Ingram, L. (2009). Applied Biochemistry and Biotechnology, 154, 182–192.

    Article  CAS  Google Scholar 

  24. ASTM D4052-11. Standard test method for density, relative density, and API gravity of liquids by digital density meter. ASTM International, West Conshohocken, PA, 2011, doi:10.1520/D4052-11.

  25. Sensöz, S., Angin, D., & Yorgun, S. (2000). Biomass and Bioenergy, 19, 271–279.

    Article  Google Scholar 

  26. Islam, M. N., Zailani, R., & Ani, F. N. (1999). Renewable Energy, 17, 73–84.

    Article  CAS  Google Scholar 

  27. Bauer, W. F., Elias, G., Pryfogle, P. A., & Partin, J. K. (2008). 30th Symposium on Biotechnology for Fuels and Chemicals.

  28. Yang, B., & Wyman, C. (2004). Biotechnology and Bioengineering, 86, 88–95.

    Article  CAS  Google Scholar 

  29. Scott, D. S., Piskorz, J., & Radelein, D. (1985). Industrial and Engineering Chemistry Process Design and Development, 24, 581–588.

    Article  CAS  Google Scholar 

  30. Scott, D. S., Paterson, L., Piskorz, J., & Radlein, D. J. (2001). Analytical and Applied Pyrolysis, 57, 169–176.

    Article  CAS  Google Scholar 

  31. Alén, R., Kuoppala, E., & Oesch, P. (1996). Journal of Analytical and Applied Pyrolysis, 36, 137–148.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by the Sustainable Energy Research Centre (SERC) and the Combined Heating and Power (CHP) funding of the Mississippi State University (MSU). The authors thank Aditya Samala, Graduate Research Assistant, Department of Agricultural and Biological Engineering, MSU, for HPLC analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan Srinivasan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, H., Srinivasan, R., Yu, F. et al. Effect of Acid, Steam Explosion, and Size Reduction Pretreatments on Bio-oil Production from Sweetgum, Switchgrass, and Corn Stover. Appl Biochem Biotechnol 167, 285–297 (2012). https://doi.org/10.1007/s12010-012-9678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-012-9678-8

Keywords

Navigation