Skip to main content
Log in

Investigation of Nutrient Feeding Strategies in a Countercurrent Mixed-Acid Multi-Staged Fermentation: Experimental Data

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nutrients are essential for microbial growth and metabolism in mixed-culture acid fermentations. Understanding the influence of nutrient feeding strategies on fermentation performance is necessary for optimization. For a four-bottle fermentation train, five nutrient contacting patterns (single-point nutrient addition to fermentors F1, F2, F3, and F4 and multi-point parallel addition) were investigated. Compared to the traditional nutrient contacting method (all nutrients fed to F1), the near-optimal feeding strategies improved exit yield, culture yield, process yield, exit acetate-equivalent yield, conversion, and total acid productivity by approximately 31%, 39%, 46%, 31%, 100%, and 19%, respectively. There was no statistical improvement in total acid concentration. The traditional nutrient feeding strategy had the highest selectivity and acetate-equivalent selectivity. Total acid productivity depends on carbon–nitrogen ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

A :

Mass of carboxylic acid, g

[A]:

Total carboxylic acid concentration, g/Lliq.

aceq:

Acetic acid equivalents concentration, g/Lliq.

B i :

Fermentor i bottle plus centrifuge cake, g

C :

Conversion, g NAVS consumed/g NAVS in feed

C/N:

Carbon–nitrogen ratio, g CNA/g N

CNA :

Non-acid carbon, g

F i :

Bulk fermentation mass in Fermentor i, g wet (as-is)

Fi :

Fermentor i

I :

Ash content, g ash/g dry sample

K Fi :

The average mass of wet solid cake in Fermentor i, g

L :

Transfer liquid stream flowrate, g wet (as-is)/day (or T)

LRT:

Liquid retention time, day

LV Fi :

Liquid volume in Fermentor i, Lliq.

M :

Moisture content, g moisture/g wet (as-is) sample

N :

Nutrient-rich substrate feedrate, g wet (as-is)/day (or T)

NAVS:

Non-acid volatile solids, g

P :

Total acid productivity, g acid produced/(Lliq.·day)

Q :

Total inlet liquid flowrate, L/day (or T)

S :

Transfer solid stream flowrate, g wet (as-is)/day (or T)

SC Fi :

Solid concentration of Fermentor i, g NAVS in Fermentor i/Lliq. in Fermentor i

T :

Time period between transfers, ~56 h

TLV:

Total liquid volume in all fermentors, L

VS:

Volatile solids, g

VSLR:

Volatile solids loading rate, g NAVS/Lliq.

W i :

Solids-retained-plus-bottle-weight set point, g

X :

May represent F, S, or L

Y F :

Feed yield, g acid in feed/g NAVS in feed

Y E :

Exit yield, g acid exiting fermentation/g NAVS in feed

Y C :

Culture yield, g acid produced/g NAVS in feed

Y P :

Process yield, g acid in product liquid/g NAVS in feed

a :

Acetic acid equivalents concentration, mol/Lliq.

η :

Soluble nitrogen mass fraction, g soluble N/g total N

ν :

Nitrogen content, g N/g wet (as-is) sample

ρ w :

Density of water, 1 g/mL

σ :

Total acid selectivity, g acid produced/g NAVS consumed

For M, I, ν, and η :

The subscript denotes the corresponding stream or material

For F, S, L, and [A]:

The subscript denotes the fermentor from which the material or stream came

For N :

The subscript denotes the fermentor the nutrient-rich substrate is fed

Subscript i :

Is a number placeholder

References

  1. Holtzapple, M. T., Davison, R. R., Ross, M. K., Aldrett-Lee, S., Nagwani, M., Lee, C.-M., et al. (1999). Applied Biochemistry and Biotechnology, 77–79, 23.

    Google Scholar 

  2. Holtzapple, M., & Granda, C. (2009). Applied Biochemistry and Biotechnology, 156(1), 95–106.

    Article  Google Scholar 

  3. Smith, A. D., Landoll, M., Falls, M., & Holtzapple, M. T. (2010). Survey of chemical production from lignocellulosic biomass. In K. W. Waldron (Ed.), Bioalcohol production: Biochemical conversion of lignocellulosic biomass (p. 560). Cambridge: Woodhead.

    Google Scholar 

  4. Sierra, R., Granda, C., & Holtzapple, M. T. (2009). Biotechnology Progress, 25(2), 323–332.

    Article  CAS  Google Scholar 

  5. Agbogbo, F. K., & Holtzapple, M. T. (2006). Applied Biochemistry and Biotechnology, 129–132, 997–1014.

    Article  Google Scholar 

  6. Aiello-Mazzarri, C., Agbogbo, F. K., & Holtzapple, M. T. (2006). Bioresource Technology, 97(1), 47–56.

    Article  CAS  Google Scholar 

  7. Domke, S. B., Aiello-Mazzarri, C., & Holtzapple, M. T. (2004). Bioresource Technology, 91(1), 41–51.

    Article  CAS  Google Scholar 

  8. Fu, Z., & Holtzapple, M. (2009). Applied Biochemistry and Biotechnology, 162(2), 561–578.

    Article  Google Scholar 

  9. Ross, M., & Holtzapple, M. (2001). Applied Biochemistry and Biotechnology, 94(2), 111–126.

    Article  CAS  Google Scholar 

  10. Thanakoses, P., Black, A. S., & Holtzapple, M. T. (2003). Biotechnology and Bioengineering, 83(2), 191–200.

    Article  CAS  Google Scholar 

  11. Chan, W. N., & Holtzapple, M. T. (2003). Applied Biochemistry and Biotechnology, 111, 93–112.

    Article  CAS  Google Scholar 

  12. Fu, Z., & Holtzapple, M. T. (2010). Biotechnology and Bioengineering, 106(2), 216–227.

    CAS  Google Scholar 

  13. Jeffries, T., & Schartman, R. (1999). Applied Biochemistry and Biotechnology, 78(1), 435–444.

    Article  Google Scholar 

  14. Abu-Reesh, I. M. (2004). Chemical and Biochemical Engineering, 18(2), 167–175.

    CAS  Google Scholar 

  15. Davis, R. H., Ramirez, W. F., & Chatterjee, A. (1990). Biotechnology Progress, 6, 430–436.

    Article  CAS  Google Scholar 

  16. Rapaport, A., Harmond, J., & Mazenc, F. (2008). Nonlinear Analysis: Real World Applications, 9, 1052–1067.

    Article  Google Scholar 

  17. Kayhanian, M., & Rich, D. (1995). Biomass and Bioenergy, 8(6), 433–444.

    Article  CAS  Google Scholar 

  18. Oztekin, R., Kapdan, I. K., Kargi, F., & Argun, H. (2008). International Journal of Hydrogen Energy, 33(15), 4083–4090.

    Article  CAS  Google Scholar 

  19. Sanchez, S., & Demain, A. L. (2002). Enzyme and Microbial Technology, 31(7), 895–906.

    Article  CAS  Google Scholar 

  20. Yen, H.-W., & Brune, D. E. (2007). Bioresource Technology, 98(1), 130–134.

    Article  CAS  Google Scholar 

  21. Forrest, A. K., Hernandez, J., & Holtzapple, M. T. (2010). Bioresource Technology, 101(19), 7510–7515.

    Article  CAS  Google Scholar 

  22. Datta, R. (1981). Biotechnology and Bioengineering, 23(1), 61–77.

    Article  CAS  Google Scholar 

  23. Kayhanian, M., & Tchobanoglous, G. (1992). BioCycle, 33(5), 58–60.

    CAS  Google Scholar 

  24. Kim, D.-H., Kim, S.-H., Han, S.-K., & Shin, H.-S. (2006). Journal of Environmental Engineering and Management, 16(5), 327–331.

    CAS  Google Scholar 

  25. Blasig, J. D., Holtzapple, M. T., Dale, B. E., Engler, C. R., & Byers, F. M. (1992). Resources Conservation and Recycling, 7(1–3), 95–114.

    Article  Google Scholar 

  26. Fu, Z., & Holtzapple, M. T. (2010). Bioresource Technology, 101(8), 2825–2836.

    Article  CAS  Google Scholar 

  27. Smith, A.D., Holtzapple, M.T., 2010. The Slope Method: A Tool for Analyzing Semi-Continuous Data. Applied Biochemistry and Biotechnology, Epub. 22 Sept 2010.

  28. Lee, C.-M. (1993). M.S. thesis, Texas A&M University, College Station, TX.

  29. Liu, X., Liu, H., Chen, Y., Du, G., & Chen, J. (2008). Journal of Chemical Technology and Biotechnology, 83(7), 1049–1055.

    Article  CAS  Google Scholar 

  30. Marchaim, U. (1992). Biogas processes for sustainable development. In FAO Agricultural Services Bulletin No. 95. Rome, Italy: Food and Agriculture Organization of the United Nations.

  31. Kayhanian, M. (1994). Journal of Chemical Technology and Biotechnology, 59(4), 349–352.

    Article  CAS  Google Scholar 

  32. Smith, A. D., & Holtzapple, M. T. (2010). Bioresource Technology, 101, 9700–9709.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was generously supported by Terrabon, Inc. of Houston, TX, USA. A special thanks to student workers Michael Dunn, Amber Patek, Srivaths Sambath, and Steven Kennedy. Jeffery Waskom of TAMU Soil, Water, and Forage Testing Laboratory analyzed numerous samples for carbon and nitrogen content. Byron Shenkir of Feather Crest Farms, Bryan, TX, USA provided chicken manure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron Douglas Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, A.D., Lockman, N.A. & Holtzapple, M.T. Investigation of Nutrient Feeding Strategies in a Countercurrent Mixed-Acid Multi-Staged Fermentation: Experimental Data. Appl Biochem Biotechnol 164, 426–442 (2011). https://doi.org/10.1007/s12010-010-9145-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-010-9145-3

Keywords

Navigation