Skip to main content
Log in

Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The enzymatic hydrolysis of lignocellulosic biomass is known to be product-inhibited by glucose. In this study, the effects on cellulolytic glucose yields of glucose inhibition and in situ glucose removal were examined and modeled during extended treatment of heat-pretreated wheat straw with the cellulolytic enzyme system, Celluclast® 1.5 L, from Trichoderma reesei, supplemented with a β-glucosidase, Novozym® 188, from Aspergillus niger. Addition of glucose (0–40 g/L) significantly decreased the enzyme-catalyzed glucose formation rates and final glucose yields, in a dose-dependent manner, during 96 h of reaction. When glucose was removed by dialysis during the enzymatic hydrolysis, the cellulose conversion rates and glucose yields increased. In fact, with dialytic in situ glucose removal, the rate of enzyme-catalyzed glucose release during 48–72 h of reaction recovered from 20–40% to become ≈70% of the rate recorded during 6–24 h of reaction. Although Michaelis–Menten kinetics do not suffice to model the kinetics of the complex multi-enzymatic degradation of cellulose, the data for the glucose inhibition were surprisingly well described by simple Michaelis–Menten inhibition models without great significance of the inhibition mechanism. Moreover, the experimental in situ removal of glucose could be simulated by a Michaelis–Menten inhibition model. The data provide an important base for design of novel reactors and operating regimes which include continuous product removal during enzymatic hydrolysis of lignocellulose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Merino, S., & Cherry, J. (2007). Advances in Biochemical Engineering/Biotechnology, 108, 95–120. doi:10.1007/10_2007_066.

    Article  CAS  Google Scholar 

  2. Palonen, H., Tjerneld, F., Zacchi, G., & Tenkanen, M. (2004). Journal of Biotechnology, 107, 65–72. doi:10.1016/j.jbiotec.2003.09.011.

    Article  CAS  Google Scholar 

  3. Zhang, Y.-I. P., & Lynd, L. R. (2004). Biotechnology and Bioengineering, 88, 797–824. doi:10.1002/bit.20282.

    Article  CAS  Google Scholar 

  4. Rosgaard, L., Pedersen, S., Langston, J., Akerhielm, D., Cherry, J. R., & Meyer, A. S. (2007a). Biotechnology Progress, 23, 1270–1276. doi:10.1021/bp070329p.

    Article  CAS  Google Scholar 

  5. Shoemaker, S., Watt, K., Tsitovsky, G., & Cox, R. (1983). Biotechnology, 1, 687–690. doi:10.1038/nbt1083-687.

    Article  CAS  Google Scholar 

  6. Tolan, J. S., & Foody, B. (1999). Cellulase from submerged fermentation. In Recent progress in bioconversion of lignocellulosics. Berlin: Springer, Advances in Biochemical Engineering/Biotechnology Book Series, vol. 65, pp. 41–67.

  7. García-Aparicio, M. P., Ballesteros, I., González, A., Oliva, J. M., Ballesteros, M., & Negro, M. J. (2006). Applied Biochemistry and Biotechnology, 129–132, 278–288. doi:10.1385/ABAB:129:1:278.

    Article  Google Scholar 

  8. Rosgaard, L., Pedersen, S., & Meyer, A. S. (2007b). Applied Biochemistry and Biotechnology, 143, 284–296. doi:10.1007/s12010-007-8001-6.

    Article  CAS  Google Scholar 

  9. Rosgaard, L., Andric, P., Dam-Johansen, K., Pedersen, S., & Meyer, A. S. (2007c). Applied Biochemistry and Biotechnology, 143, 27–40. doi:10.1007/s12010-007-0028-1.

    Article  CAS  Google Scholar 

  10. Xiao, Z., Zhang, X., Gregg, D. J., & Saddler, J. N. (2004). Applied Biochemistry and Biotechnology, 113–116, 1115–1126. doi:10.1385/ABAB:115:1-3:1115.

    Article  Google Scholar 

  11. Watanabe, T., Sato, T., Yoshioka, S., Koshijma, T., & Kuwahara, M. (1992). European Journal of Biochemistry, 209, 651–659. doi:10.1111/j.1432-1033.1992.tb17332.x.

    Article  CAS  Google Scholar 

  12. Schmid, G., & Wandrey, C. (1989). Biotechnology and Bioengineering, 33, 1445–1460. doi:10.1002/bit.260331112.

    Article  CAS  Google Scholar 

  13. Gan, Q., Allen, S. J., & Taylor, G. (2003). Process Biochemistry, 38, 1003–1018. doi:10.1016/S0032-9592(02)00220-0.

    Article  CAS  Google Scholar 

  14. Gusakov, A. V., Sinitsyn, A. P., & Klyosov, A. A. (1987). Biotechnology and Bioengineering, 29, 906–910. doi:10.1002/bit.260290715.

    Article  CAS  Google Scholar 

  15. Asenjo, J. (1983). Biotechnology and Bioengineering, 25, 3185–3190.

    Article  CAS  Google Scholar 

  16. Gruno, M., Väljamäe, P., Pettersson, G., & Johansson, G. (2004). Biotechnology and Bioengineering, 86, 503–511. doi:10.1002/bit.10838.

    Article  CAS  Google Scholar 

  17. Philippidis, G. P., Smith, T. K., & Wyman, C. E. (1993). Biotechnology and Bioengineering, 41, 846–853. doi:10.1002/bit.260410903.

    Article  CAS  Google Scholar 

  18. Tjerneld, F., Persson, I., Albertsson, P., & Hahn-Hägerdal, B. (1985). Biotechnology and Bioengineering, 27, 1044–1050. doi:10.1002/bit.260270716.

    Article  CAS  Google Scholar 

  19. Belafi-Bako, K., Koutinas, A., Nemestóthy, N., Gubicza, L., & Webb, C. (2006). Enzyme and Microbial Technology, 38, 155–161. doi:10.1016/j.enzmictec.2005.05.012.

    Article  CAS  Google Scholar 

  20. Gan, Q., Allen, S. J., & Taylor, G. (2002). Biochemical Engineering Journal, 12, 223–229. doi:10.1016/S1369-703X(02)00072-4.

    Article  CAS  Google Scholar 

  21. Yang, S., Ding, W., & Chen, H. (2006). Process Biochemistry, 41, 721–725. doi:10.1016/j.procbio.2005.08.002.

    Article  CAS  Google Scholar 

  22. Holtzapple, M., Cognata, M., Shu, Y., & Hendrickson, C. (1990). Biotechnology and Bioengineering, 36, 275–287. doi:10.1002/bit.260360310.

    Article  CAS  Google Scholar 

  23. Oh, K.-K., Kim, S.-W., Jeong, Y.-S., & Hong, S.-I. (2000). Applied Biochemistry and Biotechnology, 89, 15–30. doi:10.1385/ABAB:89:1:15.

    Article  CAS  Google Scholar 

  24. Frenneson, I., Trägårdh, G., & Hahn-Hägerdal, B. (1985). Biotechnology and Bioengineering, 27, 1328–1334. doi:10.1002/bit.260270909.

    Article  Google Scholar 

  25. Adey, B., & Baker, J.(1996). NREL Laboratory analytical procedure 006. Retrieved May 2, 2006 from http://devafdc.nrel.gov/pdfs/4689.pdf.

  26. Sluiter, A. (2006). Laboratory Analytical Procedure 002. Determination of structural carbohydrate and lignin in biomass. Retrieved May 2, 2006 from http://www.nrel.gov/biomass/analytical_procedures.html.

  27. Keller, F. A., Hamilton, J. E., & Nguyen, Q. A. (2003). Applied Biochemistry and Biotechnology, 105–108, 27–41. doi:10.1385/ABAB:105:1-3:27.

    Article  Google Scholar 

  28. Arnous, A., & Meyer, A. S. (2008). Food and Bioproducts Processing, 86, 79–86.

    Article  CAS  Google Scholar 

  29. Sin, G., Ödman, P., Petersen, N., Lantz, A. E., & Gernaey, K. V. (2008). Biotechnology and Bioengineering, 101, 153–171. doi:10.1002/bit.21869.

    Article  CAS  Google Scholar 

  30. Baerns, M., Hofmann, H., & Renken, A.(1999). Chemische reaktionstechnik, Lehrbuch der Technischen Chemie, 3. durchgesehene Auflage, Band 1, Wiley-VCH, p. 45.

  31. Thomas, S. M., DiCosimo, R., & Nagarajan, V. (2002). Trends in Biotechnology, 20, 238–242. doi:10.1016/S0167-7799(02)01935-2.

    Article  CAS  Google Scholar 

  32. Straathof, A. J. J., Panke, S., & Schmid, A. (2002). Current Opinion in Biotechnology, 13, 548–556. doi:10.1016/S0958-1669(02)00360-9.

    Article  CAS  Google Scholar 

  33. Fan, L. T., & Lee, Y. - H. (1983). Biotechnology and Bioengineering, 25, 939–966. doi:10.1002/bit.260251115.

    Article  Google Scholar 

  34. Wald, S., Wilke, C. R., & Blanch, H. W. (1984). Biotechnology and Bioengineering, 24, 221–230. doi:10.1002/bit.260260305.

    Article  Google Scholar 

  35. Holtzapple, M. T., Caram, H. S., & Humphrey, A. E. (1984). Biotechnology and Bioengineering, 24, 753–757. doi:10.1002/bit.260260719.

    Article  Google Scholar 

  36. Dekker, R. F. H. (1996). Biotechnology and Bioengineering, 28, 1438–1442. doi:10.1002/bit.260280918.

    Article  Google Scholar 

  37. Lee, Y. - H., & Fan, L. T. (1983). Biotechnology and Bioengineering, 25, 939–966. doi:10.1002/bit.260250406.

    Article  CAS  Google Scholar 

  38. Gusakov, A. V., & Sinitsyn, A. P. (1992). Biotechnology and Bioengineering, 40, 663–671. doi:10.1002/bit.260400604.

    Article  CAS  Google Scholar 

  39. Pedersen, M., & Meyer, A. S. (2009). Biotechnology Progress (in press).

  40. Huang, X., & Penner, M. H. (1991). Journal of Agricultural and Food Chemistry, 39, 2096–2100. doi:10.1021/jf00011a042.

    Article  CAS  Google Scholar 

  41. Väljamäe, P., Petterson, G., & Johansson, G. (2001). European Journal of Biochemistry, 268, 4520–4526. doi:10.1046/j.1432-1327.2001.02377.x.

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Novozymes A/S for providing the enzymes. Dong Energy A/S is acknowledged for supplying the pretreated wheat straw. Dr. Gürkan Sin, Department of Chemical and Biochemical Engineering, Technical University of Denmark, is acknowledged for his help with the numerical simulations. This work is part of the CHEC (Combustion and Harmful Emission Control) Research Center funded a.o. by the Technical University of Denmark, the Danish Technical Research Council, the European Union, the Nordic Energy Research, Dong Energy A/S, Vattenfall A.B., F L Smidth A/S, and Public Service Obligation funds from Energinet.dk and the Danish Energy Research program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne S. Meyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrić, P., Meyer, A.S., Jensen, P.A. et al. Effect and Modeling of Glucose Inhibition and In Situ Glucose Removal During Enzymatic Hydrolysis of Pretreated Wheat Straw. Appl Biochem Biotechnol 160, 280–297 (2010). https://doi.org/10.1007/s12010-008-8512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8512-9

Keywords

Navigation