Skip to main content
Log in

Lactose Hydrolysis by β-Galactosidase Covalently Immobilized to Thermally Stable Biopolymers

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lactose has been hydrolyzed using covalently immobilized β-galactosidase on thermally stable carrageenan coated with chitosan (hydrogel). The hydrogel’s mode of interaction was proven by Fourier transform infrared spectroscopy, differential scanning calorimetry (DSC), and Schiff’s base formation. The DSC thermogram proved the formation of a strong polyelectrolyte complex between carrageenan and chitosan followed by glutaraldehyde as they formed one single peak. The modification of carrageenan improved the gel’s thermal stability in solutions from 35 °C to 95 °C. The hydrogel has been proven to be efficient for β-galactosidase immobilization where 11 U/g wet gel was immobilized with 50% enzyme loading capacity. Activity and stability of free and immobilized β-galactosidase towards pH and temperature showed marked shifts in their optimum pH from 4.5–5 to 5–5.5 and temperature from 50 °C to 45–55 °C after immobilization, which reveals higher catalytic activity and reasonable stability at wider pHs and temperatures. The apparent K m of the immobilized enzyme increased from 13.2 to 125 mM, whereas the V max increased from 3.2 to 6.6 μmol/min compared to the free enzyme, respectively. The free and immobilized enzymes showed lactose conversion of 87% and 70% at 7 h, respectively. The operational stability showed 97% retention of the enzyme activity after 15 uses, which demonstrates that the covalently immobilized enzyme is unlikely to leach. The new carrier could be suitable for immobilization of other industrial enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ordoñez, J. A., Cambero, M. A., Fernandez, L., Garcia, M. L., Garcia, G., Hoz, L. et al. (1998). Tecnologia de los alimentos (II). Madrid, Spain: Editorial Sintesis.

  2. Richmond, M. (1759). Gray, J. & Stine, C. (1981). Journal of dairy science, 1759, 64.

  3. German, J. H. (1997). Applied enzymology of lactose hydrolysis. In Milk powders for the future, p. 81.

  4. Sungur, S., & Akbulut, U. (1994). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 59, 303. doi:10.1002/jctb.280590314.

    Article  CAS  Google Scholar 

  5. Nijipels, H. H. (1981). Lactases and their applications. In G. G. Birch, H. Blakebrough, & K. J. Parker (Eds.), Enzyme and food processing (p. 89). London: Applied Science Publishers.

    Google Scholar 

  6. Betancor, L., Luckarift, R., Seo, H., Brand, O., & Spain. (2008). Biotechnology and Bioengineering, 99, 261. doi:10.1002/bit.21570.

    Article  CAS  Google Scholar 

  7. Wang, Y., Xu, J., Luo, G., & Dai, Y. (2008). Bioresource Technology, 99, 2299. doi:10.1016/j.biortech.2007.05.014.

    Article  CAS  Google Scholar 

  8. Jozef, S., & Sylwia, W. (2006). Enzyme and Microbial Technology, 39, 1417. doi:10.1016/j.enzmictec.2006.03.028.

    Article  Google Scholar 

  9. Salah, S., Srimathi, S., Gulnara, S., Ikuo, S., & Bengt, D. (2008). Talanta, 77, 490. doi:10.1016/j.talanta.2008.04.003.

    Article  Google Scholar 

  10. D’Souza, S. F. (1999). Current Science, 77, 69.

    Google Scholar 

  11. Kahraman, V., Bayramoglu, G., Kayaman-Apohan, N., & Atilla, G. (2007). Food Chemistry, 104, 1385. doi:10.1016/j.foodchem.2007.01.054.

    Article  CAS  Google Scholar 

  12. Shweta, P., Shamsher, K., Ghanshyam, C., & Reena, G. (2008). Bioresource Technology, 99, 2566. doi:10.1016/j.biortech.2007.04.042.

    Article  Google Scholar 

  13. Emese, B., Ágnes, N., Csaba, S., Tivadar, F., & János, G. (2008). Journal of Biochemical and Biophysical Methods, 70, 1240. doi:10.1016/j.jprot.2007.11.005.

    Article  Google Scholar 

  14. Peppler, H. J., & Reed, G. (1987). Enzymes in food and feed processing. In H. J. Rehm, G. Reed (Eds.), Biotechnology, vol. 7a (p. 578). Weinheim: VCH.

  15. Elnashar, M. M., & Yassin, A. M. (2008). Journal of Applied Polymer Science (in press).

  16. Wang, J., & Qiang, Y. (1999). Chemosphere, 38, 3109. doi:10.1016/S0045-6535(98)00516-5.

    Article  CAS  Google Scholar 

  17. Elnashar, M. M., Millner, P., Johnson, A., & Gibson, T. (2005). Biotechnology Letters, 27, 737. doi:10.1007/s10529-005-5363-0.

    Article  CAS  Google Scholar 

  18. Luong, j. (1985). Biotechnology and Bioengineering, 27, 1652.

    Article  CAS  Google Scholar 

  19. Chang, J., Cho, C., & Chen, S. (2001). Process Biochemistry, 36, 757. doi:10.1016/S0032-9592(00)00274-0.

    Article  CAS  Google Scholar 

  20. Moon, S., & Parulekar, S. J. (1991). Biotechnology Progress, 7, 516. doi:10.1021/bp00012a006.

    Article  CAS  Google Scholar 

  21. Tramper, J., & Grootjen, D. R. (1986). Enzyme and Microbial Technology, 8, 477. doi:10.1016/0141-0229(86)90051-7.

    Article  CAS  Google Scholar 

  22. Chao, K. C., Haugen, M. M., & Royer, G. P. (1986). Biotechnology and Bioengineering, 28, 1289. doi:10.1002/bit.260280902.

    Article  CAS  Google Scholar 

  23. Trinder, P. (1969). Annals of Clinical Biochemistry, 6, 24.

    CAS  Google Scholar 

  24. El-Masry, M., De Maioa, B., Martelli, C., Casadio, C., Moustafa, A., Rossi, A., et al. (2001). Journal of Molecular Catalysis. B, Enzymatic, 16, 175. doi:10.1016/S1381-1177(01)00061-3.

    Article  CAS  Google Scholar 

  25. El-Masry, M., Elnashar, M. M., & El-sherif, M. (2007). Journal of Applied Polymer Science, 106, 3571. doi:10.1002/app.26931.

    Article  CAS  Google Scholar 

  26. Elnashar, M. M., Yassin, A. M., & Kahil, T. (2008). Journal of Applied Polymer Science, 109, 4105. doi:10.1002/app.28379.

    Article  CAS  Google Scholar 

  27. Tapia, C., Escobara, Z., Costab, E., Sapag-Hagara, J., Valenzuelaa, F., Basualtoa, C., et al. (2004). European Journal of Pharmaceutics and Biopharmaceutics, 57, 65. doi:10.1016/S0939-6411(03)00153-X.

    Article  CAS  Google Scholar 

  28. Maciel, J. S., Silva, D. A., Haroldo, C. B., & Paula, R. C. (2005). European Polymer Journal, 41, 2726. doi:10.1016/j.eurpolymj.2005.05.009.

    Article  CAS  Google Scholar 

  29. Desai, P., Dave, A., & Devi, S. (2004). Journal of Molecular Catalysis. B, Enzymatic, 31, 143. doi:10.1016/j.molcatb.2004.08.004.

    Article  CAS  Google Scholar 

  30. Tor, R., Dror, Y., & Freeman, A. (1989). Enzyme and Microbial Technology, 11, 306. doi:10.1016/0141-0229(89)90047-1.

    Article  CAS  Google Scholar 

  31. Tanriseven, A., & Dogan, S. (2002). Process Biochemistry, 38, 27. doi:10.1016/S0032-9592(02)00049-3.

    Article  CAS  Google Scholar 

  32. Szczodrakr, J. (2000). Journal of Molecular Catalysis B: Enzymatic, 10, 631. 29.

    Google Scholar 

  33. Kennedy, J., & Cabral, M. (1987). Enzyme immobilization. In J. Kennedy, J. Rehm, G. Reed (Eds.), Biotechnology, Vol. 7a, Chapter 7. Germany: VCH.

  34. Mohi Eldin, M., Rossi, S., Bencivenga, U., & Mita, J. (1999). Molecular Catalysis B. Enzymatic, 47, 1.

    Google Scholar 

  35. Haider, T., & Husain, Q. (2007). Journal of the Science of Food and Agriculture, 87, 1278. doi:10.1002/jsfa.2840.

    Article  CAS  Google Scholar 

  36. Nakane, K., Ogihara, T., Ogata, N., & Kurokawa, Y. (2001). Journal of Applied Polymer Science, 81, 2084. doi:10.1002/app.1642.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Centre, Centre of Scientific Excellence, Laboratory of Advanced Materials & Nanotechnology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdy M. M. Elnashar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elnashar, M.M.M., Yassin, M.A. Lactose Hydrolysis by β-Galactosidase Covalently Immobilized to Thermally Stable Biopolymers. Appl Biochem Biotechnol 159, 426–437 (2009). https://doi.org/10.1007/s12010-008-8453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8453-3

Keywords

Navigation