Skip to main content
Log in

Kinetic and Stoichiometric Parameters in the Production of Carotenoids by Sporidiobolus salmonicolor (CBS 2636) in Synthetic and Agroindustrial Media

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

With the objective of determining the kinetic behavior (growth, substrate, pH, and carotenoid production) and obtain the stoichiometric parameters of the fermentative process by Sporidiobolus salmonicolor in synthetic and agroindustrial media, fermentations were carried out in shaken flasks at 25°C, 180 rpm, and initial pH of 4.0 for 120 h in the dark, sampling every 6 h. The maximum concentrations of total carotenoids in synthetic (913 μg/L) and agroindustrial (502 μg/L) media were attained approximately 100 h after the start of the fermentative process. Carotenoid bioproduction is associated with cell growth and the ratio between carotenoid production and cell growth (Y P/X) is 176 and 163 μg/g in the synthetic and agroindustrial media, respectively. The pH of the agroindustrial fermentation medium varied from 4.2 to 8.5 during the fermentation. The specific growth rate (μ X) for S. salmonicolor in synthetic and agroindustrial media was 0.07 and 0.04 h−1, respectively. The synthetic medium allowed for greater productivity, obtaining maximum cell productivity (P x) of 0.08 g L−1 h−1 and maximum total carotenoid productivity (P car) of 14.2 μg L−1 h−1. Knowledge of the kinetics of a fermentative process is of extreme importance when transposing a laboratory experiment to an industrial scale, as well as making a quantitative comparison between different culture conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Botella-Pavía, P., & Rodríguez-Concepción, M. (2006). Physiologia Plantarum, 126, 369–381. doi:10.1111/j.1399-3054.2006.00632.x.

    Article  Google Scholar 

  2. Hu, Z.-C., Zheng, Y.-G., Wang, Z., & Shen, Y.-C. (2006). Enzyme and Microbial Technology, 39, 586–590. doi:10.1016/j.enzmictec.2005.11.017.

    Article  CAS  Google Scholar 

  3. Liu, Y.-S., Wu, J.-Y., & Ho, K.-P. (2006). Biochemical Engineering Journal, 27, 331–335. doi:10.1016/j.bej.2005.08.031.

    Article  Google Scholar 

  4. Buzzini, P., Martini, A., Gaetani, M., Turchetti, B., Pagnoni, U. M., & Davoli, P. (2005). Enzyme and Microbial Technology, 36, 687–692. doi:10.1016/j.enzmictec.2004.12.028.

    Article  CAS  Google Scholar 

  5. Dufosse, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., et al. (2005). Trends in Food Science & Technology, 16, 389–406. doi:10.1016/j.tifs.2005.02.006.

    Article  CAS  Google Scholar 

  6. Tinoi, J., Rakariyatham, R. L., & Deming, R. L. (2005). Process Biochemistry, 40, 2551–2557. doi:10.1016/j.procbio.2004.11.005.

    Article  CAS  Google Scholar 

  7. Davoli, P., Mierau, V., & Weber, R. W. S. (2004). Applied Biochemistry and Microbiology, 40, 392–397. doi:10.1023/B:ABIM.0000033917.57177.f2.

    Article  CAS  Google Scholar 

  8. Hiss, H. (2001). Cinética de processos fermentativos. In W. Schmidell, U. A. Lima, E. Aquarone, & W. Borzani (Eds.), Biotecnologia Industrial: Engenharia Bioquímica (pp. 93–121). São Paulo: Editora Edgar Blücher Ltda.

    Google Scholar 

  9. Bailey, J. E., & Ollis, D. F. (1986). In biochemical engineering fundamentals (2nd ed.). New York: McGraw-Hill.

    Google Scholar 

  10. Valduga, E., Treichel, H., Valério, A., Jacques, R., Furigo Júnior, A., & Di Luccio, M. (2007). Quimica Nova, 30, 1860–1866. doi:10.1590/S0100-40422007000800012.

    CAS  Google Scholar 

  11. Valduga, E., Treichel, H., Valério, A., Furigo Júnior, A., & Di Luccio, M. (2008). Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), in press.

  12. Davies, B. H. (1976). In T. W. Goodwin (Ed.), Chemistry and biochemistry of plant pigments. New York: Academic.

    Google Scholar 

  13. Maldonado, I. R., Rodriguez-Amaya, D. B., & Scamparini, A. R. P. (2008). Food Chemistry, 107, 145–150. doi:10.1016/j.foodchem.2007.07.075.

    Article  Google Scholar 

  14. Mantzouridou, F., Roukas, T., & Kotzekidou, P. (2002). Biochemical Engineering Journal, 10, 123–135. doi:10.1016/S1369-703X(01)00166-8.

    Article  CAS  Google Scholar 

  15. Frengova, G., Simova, E., Pavlova, K., Beshkova, D. M., & Grigrova, D. (1994). Biotechnology and Bioengineering, 44, 888–894. doi:10.1002/bit.260440804.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunice Valduga.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valduga, E., Valério, A., Treichel, H. et al. Kinetic and Stoichiometric Parameters in the Production of Carotenoids by Sporidiobolus salmonicolor (CBS 2636) in Synthetic and Agroindustrial Media. Appl Biochem Biotechnol 157, 61–69 (2009). https://doi.org/10.1007/s12010-008-8383-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-008-8383-0

Keywords

Navigation