Skip to main content
Log in

Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating

  • Published:
Journal of Coatings Technology and Research Aims and scope Submit manuscript

Abstract

In this study, carbon nanotubes (CNTs) were stabilized on a cotton surface using 1,2,3,4-butanetetracarboxylic acid (BTCA) as a crosslinking agent and sodium hypophosphite as a catalyst. The influence of CNTs on the performance of the cellulose fiber was investigated using a Raman spectrophotometer, thermogravimetric analyzer, a scanning electron microscope, electrical contacting equipment, and an electromagnetic field detector. The possible interactions between CNTs, a crosslinking agent, and cellulose functional groups at the surface were elucidated by Raman spectroscopy. The results indicate that the stabilized CNTs modify the surface of the fibers and increase the functionality and thermal stability of the substrate. SEM showed a uniform coating of CNTs on the fiber surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Xu, J, Fisher, TS, “Enhancement of Thermal Interface Materials with Carbon Nanotube Arrays.” Int. J. Heat Mass Transf., 49 1658–1666 (2006)

    Article  CAS  Google Scholar 

  2. Polizu, S, Maugey, M, Poulin, S, Yahia, L, “Nanoscale Surface of Carbon Nanotube Fibers for Medical Applications: Structure and Chemistry Revealed by TOF-SIMS Analysis.” Appl. Surf. Sci., 252 6750–6753 (2006)

    Article  CAS  Google Scholar 

  3. Oh, J, Chang, YW, Kim, HJ, Yoo, S, Kim, DJ, Im, S, Park, YJ, Kim, D, Yoo, KH, “Carbon Nanotube-Based Dual-Mode Biosensor for Electrical and Surface Plasmon Resonance Measurements.” Nano Lett., 10 2755–2760 (2010)

    Article  CAS  Google Scholar 

  4. Harrison, BS, Atala, A, “Carbon Nanotube Applications for Tissue Engineering.” Biomaterials, 28 344–353 (2007)

    Article  CAS  Google Scholar 

  5. Bellayer, S, Gilman, JW, Rahatekar, SS, Bourbigot, S, Flambard, X, Hanssen, LM, Guo, H, Kumar, S, “Characterization of SWCNT and PAN/SWCNT Films.” Carbon, 45 2417–2423 (2007)

    Article  CAS  Google Scholar 

  6. Byl, O, Liu, J, Yates, JTJr, “Characterization of Single Wall Carbon Nanotubes by Nonane Preadsorption.” Carbon, 44 2039–2044 (2006)

    Article  CAS  Google Scholar 

  7. Thostenson, ET, Ren, Z, Chou, TW, “Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review.” Compos. Sci. Technol., 61 1899–1912 (2001)

    Article  CAS  Google Scholar 

  8. Duclaux, L, “Review of the Doping of Carbon Nanotubes (Multiwalled and Single-Walled).” Carbon, 40 1751–1764 (2002)

    Article  CAS  Google Scholar 

  9. Coleman, JN, Khan, U, Blau, WJ, Gunko, YK, “Small but Strong: A Review of the Mechanical Properties of Carbon Nanotube–Polymer Composites.” Carbon, 44 1624–1652 (2006)

    Article  CAS  Google Scholar 

  10. Tzitzios, V, Georgakilas, V, Oikonomou, E, Karakassides, M, Petridis, D, “Synthesis and Characterization of Carbon Nanotube/Metal Nanoparticle Composites Well Dispersed in Organic Media.” Carbon, 44 848–853 (2006)

    Article  CAS  Google Scholar 

  11. Yang, D, Hu, J, Wang, C, “Synthesis and Characterization of pH-Responsive Single-Walled Carbon Nanotubes with a Large Number of Carboxy Groups.” Carbon, 44 3161–3167 (2006)

    Article  CAS  Google Scholar 

  12. Najafi, E, Kim, JY, Han, SH, Shin, K, “UV-Ozone Treatment of Multi-walled Carbon Nanotubes for Enhanced Organic Solvent Dispersion.” Colloids Surf. A, 284–285 373–378 (2006)

    Article  Google Scholar 

  13. Wepasnick, KA, Smith, BA, Schrote, KE, Wilson, HK, Diegelmann, SR, Fairbrother, DH, “Surface and Structural Characterization of Multi-Walled Carbon Nanotubes Following Different Oxidative Treatments.” Carbon, 49 24–36 (2011)

    Article  CAS  Google Scholar 

  14. Angelikopoulos, P, Gromov, A, Leen, A, Nerushev, O, Bock, H, Campbell, EEB, “Dispersing Individual Single-Wall Carbon Nanotubes in Aqueous Surfactant Solutions Below the cmc.” J. Phys. Chem. C, 114 2–9 (2010)

    Article  CAS  Google Scholar 

  15. Mora, RJ, Vilatela, JJ, Windle, AH, “Properties of Composites of Carbon Nanotube Fibres.” Compos. Sci. Technol., 69 1558–1563 (2009)

    Article  CAS  Google Scholar 

  16. Chen, H, Liu, Z, Cebe, P, “Chain Confinement in Electrospun Nanofibers of PET with Carbon Nanotubes.” Polymer, 50 872–880 (2009)

    Article  CAS  Google Scholar 

  17. Lee, C, Baik, S, “Vertically-Aligned Carbon Nanotube Membrane Filters with Superhydrophobicity and Superoleophilicity.” Carbon, 48 2192–2197 (2010)

    Article  CAS  Google Scholar 

  18. Xue, P, Park, KH, Tao, XM, Chen, W, Cheng, XY, “Electrically Conductive Yarns Based on PVA/Carbon Nanotubes.” Compos. Struct., 78 271–277 (2007)

    Article  Google Scholar 

  19. Meng, Q, Hu, J, “Self-Organizing Alignment of Carbon Nanotube in Shape Memory Segmented Fiber Prepared by In Situ Polymerization and Melt Spinning.” Composites Part A, 39 314–321 (2008)

    Article  Google Scholar 

  20. Pötschke, P, Andres, T, Villmow, T, Pegel, S, Brünig, H, Kobashi, K, Fischer, D, Haussler, L, “Liquid Sensing Properties of Fibres Prepared by Melt Spinning from Poly(lactic acid) Containing Multi-walled Carbon Nanotubes.” Compos. Sci. Technol., 70 343–349 (2010)

    Article  Google Scholar 

  21. Chou, TW, Gao, L, Thostenson, ET, Zhang, Z, Byun, JH, “An assessment of the Science and Technology of Carbon Nanotube-Based Fibers and Composites.” Compos. Sci. Technol., 70 1–19 (2010)

    Article  CAS  Google Scholar 

  22. Inagaki, M, Kaneko, K, Nishizawa, T, “Nanocarbons—Recent Research in Japan.” Carbon, 42 1401–1417 (2004)

    Article  CAS  Google Scholar 

  23. Shim, BS, Chen, W, Doty, C, Xu, C, Kotov, A, “Smart Electronic Yarns and Wearable Fabrics for Human Biomonitoring made by Carbon Nanotube Coating with Polyelectrolytes.” Nano Lett., 8 4151–4157 (2008)

    Article  CAS  Google Scholar 

  24. Hu, L, Pasta, M, Mantia, FL, Cui, L, Jeong, S, Deshazer, HD, Choi, JW, Han, SM, Cui, Y, “Stretchable, Porous, and Conductive Energy Textiles.” Nano Lett., 10 708–714 (2010)

    Article  CAS  Google Scholar 

  25. El-tahlawy, KF, El-bendary, MA, Elhendawy, AG, Hudson, SM, “The Antimicrobial Activity of Cotton Fabrics Treated with Different Crosslinking Agents and Chitosan.” Carbohydr. Polym., 60 421–430 (2005)

    Article  CAS  Google Scholar 

  26. Hsieh, SH, Huang, ZK, Huang, ZZ, Tseng, ZS, “Antimicrobial and Physical Properties of Woolen Fabrics Cured with Citric Acid and Chitosan.” J. Appl. Polym. Sci., 94 1999–2007 (2004)

    Article  CAS  Google Scholar 

  27. Knittel, D, Schollmeyer, E, “Electrically High-Conductive Textiles.” Synth. Met., 159 1433–1437 (2009)

    Article  CAS  Google Scholar 

  28. Kavkler, K, Demsar, A, “Examination of Cellulose Textile Fibres in Historical Objects by Micro-Raman Spectroscopy.” Spectrochim. Acta A, 78 740–746 (2011)

    Article  Google Scholar 

  29. Montazer, M, Alimohammadi, F, Shamei, A, Rahimi, MK, “In Situ Synthesis of Nano Silver on Cotton Using Tollens’ Reagent.” Carbohydrate Polymers, 87 1706–1712 (2012)

    Article  CAS  Google Scholar 

  30. Adebajo, MO, Frost, RL, Kloprogge, JT, Kokot, S, “Raman Spectroscopic Investigation of Acetylation of Raw Cotton.” Spectrochim. Acta A, 64 448–453 (2006)

    Article  CAS  Google Scholar 

  31. Abidi, N, Cabrales, L, Hequet, E, “Thermogravimetric Analysis of Developing Cotton Fibers.” Thermochim. Acta, 498 27–32 (2010)

    Article  CAS  Google Scholar 

  32. Cabrales, L, Abidi, N, “On the Thermal Degradation of Cellulose in Cotton Fibers.” J. Therm. Anal. Calorim., 102 485–491 (2010)

    Article  CAS  Google Scholar 

  33. Alimohammadi, F, Parvinzadeh Gashti, M, Shamei, A, Kiumarsi, A, “Deposition of Silver Nanoparticles on Carbon Nanotube by Chemical Reduction Method: Evaluation of Surface, Thermal and Optical Properties.” Superlattices Microstruct., 52 50–62 (2012)

    Article  CAS  Google Scholar 

  34. Yang, DJ, Wang, SG, Zhang, Q, Sellin, PJ, Chen, G, “Thermal and Electrical Transport in Multi-walled Carbon Nanotubes.” Phys. Lett. A, 329 207–213 (2004)

    Article  CAS  Google Scholar 

  35. Parvinzadeh, M, Moradian, S, Rashidi, A, Yazdanshenas, ME, “Surface Characterization of Polyethylene Terephthalate/Silica Nanocomposites.” Appl. Surf. Sci., 256 2792–2802 (2010)

    Article  CAS  Google Scholar 

  36. Parvinzadeh, M, Moradian, S, Rashidi, A, Yazdanshenas, ME, “Effect of Addition of Modified Nanoclays on Surface Properties of the Resultant Polyethylene Terephthalate/Clay Nanocomposites.” Polym. Plast. Technol. Eng., 49 1–11 (2010)

    Article  Google Scholar 

  37. Hajiraissi, R, Parvinzadeh, M, “Preparation of Polybutylene Terephthalate/Silica Nanocomposites by Melt Compounding: Evaluation of Surface Properties.” Appl. Surf. Sci., 257 8443–8450 (2011)

    Article  CAS  Google Scholar 

  38. Parvinzadeh, M, Ebrahimi, I, “Atmospheric Air-Plasma Treatment of Polyester Fiber to Improve the Performance of Nanoemulsion Silicone.” Appl. Surf. Sci., 257 4062–4068 (2011)

    Article  CAS  Google Scholar 

  39. Parvinzadeh, M, Hajiraissi, R, “Effect of Nano and Micro Emulsion Silicone Softeners on properties of Polyester Fibers.” Tenside Surfactant Deterg., 45 254–257 (2008)

    CAS  Google Scholar 

  40. Tao, X, Wearable Electronics and Photonics. Woodhead Publishing, Cambridge, 2005

    Book  Google Scholar 

  41. Brown, PJ, Stevens, K, Nanofibers and Nanotechnology in Textiles, p. 183. Woodhead Publishing, Cambridge, 2007

    Book  Google Scholar 

  42. Panhuis, M, Jian, W, Ashraf, SA, Wallace, GG, “Conducting Textiles from Single-Walled Carbon Nanotubes.” Synth. Met., 157 358–362 (2007)

    Article  Google Scholar 

  43. Kim, HM, Kim, K, Lee, CY, Wallace, GG, “Electrical Conductivity and Electromagnetic Interference Shielding of Multiwalled Carbon Nanotube Composites Containing Fe Catalyst.” Appl. Phys. Lett., 84 589–591 (2004)

    Article  CAS  Google Scholar 

  44. Parvinzadeh, M, Eslami, S, “Optical and Electromagnetic Characteristics of Clay–Iron Oxide Nanocomposites.” Res. Chem. Intermed., 37 771–784 (2011)

    Article  CAS  Google Scholar 

  45. Alimohammadi, F, Parvinzadeh, M, Shamei, A, “Carbon Nanotube Embedded Textiles.” US Patent, 0171413, 2011

  46. Montazer, M, Alimohammadi, F, Shamei, A, Rahimi, MK, “Durable Antibacterial and Cross-Linking Cotton with Colloidal Silver Nanoparticles and Butane Tetracarboxylic Acid Without Yellowing.” Colloid Surf. B, 89 196–202 (2012)

    Article  CAS  Google Scholar 

  47. Parvinzadeh Gashti, M, Alimohammadi, F, Shamei, A, “Preparation of Water-Repellent Cellulose Fibers Using a Polycarboxylic Acid/Hydrophobic Silica Nanocomposite Coating.” Surf. Coat. Technol., 206 3208–3215 (2012)

    Article  Google Scholar 

  48. Montazer, M, Shamei, A, Alimohammadi, F, “Stabilized Nanosilver Loaded Nylon Knitted Fabric Using BTCA Without Yellowing.” Prog. Org. Coat., 74 270–276 (2012)

    Article  CAS  Google Scholar 

  49. Shamei, A, Parvinzadeh, M, Alimohammadi, F, “Water-Resistance Silica-Embedded Textiles.” US Patent 0287245, 2011

  50. Huang, Y, Li, N, Ma, Y, Du, F, Li, F, He, X, Lin, X, Gao, H, Chen, Y, “The Influence of Single-Walled Carbon Nanotube Structure on the Electromagnetic Interference Shielding Efficiency of Its Epoxy Composites.” Carbon, 45 1614–1621 (2007)

    Article  CAS  Google Scholar 

  51. Park, KY, Lee, SE, Kim, CG, Han, JH, “Fabrication and Electromagnetic Characteristics of Electromagnetic Wave Absorbing Sandwich Structures.” Compos. Sci. Technol., 66 576–584 (2006)

    Article  CAS  Google Scholar 

  52. Li, N, Huang, Y, Du, F, He, X, Lin, X, Gao, H, Ma, Y, Li, F, Chen, Y, Eklund, PC, “Electromagnetic Interference (EMI) Shielding of Single-Walled Carbon Nanotube Epoxy Composites.” Nano Lett., 6 1141–1145 (2006)

    Article  CAS  Google Scholar 

  53. Liu, Z, Bai, G, Huang, Y, Ma, Y, Du, F, Li, F, Guo, T, Chen, Y, “Reflection and Absorption Contributions to the Electromagnetic Interference Shielding of Single-Walled Carbon Nanotube/Polyurethane Composites.” Carbon, 45 821–827 (2007)

    Article  CAS  Google Scholar 

  54. Alimohammadi, F, Parvinzadeh Gashti, M, Shamei, A, “A Novel Method for Coating of Carbon Nanotube on Cellulose Fiber Using 1,2,3,4-butanetetracarboxylic Acid as a Cross-linking Agent.” Prog. Org. Coat., 74 470–478 (2012)

    Article  CAS  Google Scholar 

  55. Parvinzadeh Gashti, M, Eslami, S, “Structural, Optical and Electromagnetic Properties of Aluminum–clay Nanocomposites.” Superlattice Microstruct., 51 135–148 (2012)

    Article  Google Scholar 

  56. Parvinzadeh Gashti, M, Almasian, A, “Synthesizing Tertiary Silver/Silica/Kaolinite Nanocomposite Using Photo-reduction Method: Characterization of Morphology and Electromagnetic Properties.” Compos. Part B: Eng. doi:10.1016/j.compositesb.2012.01.050

  57. Chang, CM, Liu, YL, “Electrical Conductivity Enhancement of Polymer/Multiwalled Carbon Nanotube (MWCNT) Composites by Thermally-Induced Defunctionalization of MWCNTs.” ACS Appl. Mater. Interfaces, 3 2204–2208 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mazeyar Parvinzadeh Gashti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alimohammadi, F., Parvinzadeh Gashti, M. & Shamei, A. Functional cellulose fibers via polycarboxylic acid/carbon nanotube composite coating. J Coat Technol Res 10, 123–132 (2013). https://doi.org/10.1007/s11998-012-9429-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11998-012-9429-3

Keywords

Navigation