Skip to main content
Log in

Chitosan Nanoparticle Penetration into Shrimp Muscle and its Effects on the Microbial Quality

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Chitosan (CH) and chitosan-sodium tripolyphosphate (CH-TPP) solutions were produced with and without sonication and ultra-shearing. The CH and CH-TPP particles and solutions were evaluated for physicochemical properties, and fluorescently labeled particle penetration into shrimp muscle tissue through vacuum tumbling was observed. Two solutions were prepared: (1) a 0.5 % CH solution in 1 % acetic acid and (2) a CH-TPP solution, prepared by adding 0.167 % sodium tripolyphosphate to the CH solution, instantly forming CH-TPP nanoparticles through ionotropic gelation. Untreated shrimp meat and shrimp meat vacuum tumbled with CH, CH-TPP, acetic acid, sodium tripolyphosphate, and distilled water solutions were analyzed for aerobic plate counts for 24 days of refrigerated storage at 4 °C. Processing with sonication and ultra-shearing reduced the particle sizes of CH and CH-TPP nanoparticles and the molecular weight of CH. It was observed that after processing, fluorescently labeled CH and CH-TPP nanoparticles could penetrate inside of and attach to shrimp muscle tissues through vacuum tumbling. At 24 days of refrigerated storage, shrimp vacuum tumbled with processed CH solution had the lowest aerobic plate counts of all treatments and it was the only treatment to have unchanged microbial quality throughout the entire storage time. Vacuum tumbling with sonicated and ultra-sheared CH solution enhanced particle penetration into shrimp and inhibited microbial growth during refrigerated storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdou, E. S., Osheba, A. S., & Sorour, M. A. (2012). Effect of chitosan and chitosan-nanoparticles as active coating on microbiological characteristics of fish fingers. International Journal of Applied Science and Technology, 2(7), 158–169.

    Google Scholar 

  • Ai, J., Biazar, E., Jafarpour, M., Montazeri, M., Majdi, A., Aminifard, S., Zafari, M., Akbari, H. R., & Rad, H. G. (2011). Nanotoxicology and nanoparticle safety in biomedical designs. International Journal of Nanomedicine, 6, 1117–1127.

    CAS  Google Scholar 

  • Akiyama, K., Kawazu, K., & Kobayashi, A. (1995). A novel method for chemo-enzymatic synthesis of elicitor-active chitosan oligomers and partially N-deacetylated chitin oligomers using N-acylated chitotrioses as substrates in a lysozyme-catalyzed transglycosylation reaction system. Carbohydrate Research, 279, 151–160.

    Article  CAS  Google Scholar 

  • Arancibia, M. Y., Lopez-Caballero, M. E., Gomez-Guillen, M. C., Fernandez-Garcia, M., Fernandez-Martin, F., & Montero, P. (2015). Antimicrobial and rheological properties of chitosan as affected by extracting conditions and humidity exposure. LWT-Food Science and Technology, 60(2), 802–810.

    Article  CAS  Google Scholar 

  • Azeredo, H. M. C. (2013). Antimicrobial nanostructures in food packaging. Trends in Food Science & Technology, 30(1), 56–69.

    Article  Google Scholar 

  • Baxter, S., Zivanovic, S., & Weiss, J. (2005). Molecular weight and degree of acetylation of high-intensity ultrasonicated chitosan. Food Hydrocolloids, 19(5), 821–830.

    Article  CAS  Google Scholar 

  • Benhabiles, M. S., Salah, R., Lounici, H., Drouiche, N., Goosen, M. F. A., & Mameri, N. (2012). Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocolloids, 29(1), 48–56.

    Article  CAS  Google Scholar 

  • Bhattacharyya, S., Datta, S., & Bhattacharjee, C. (2012). Sonication boost the total reducing sugar (TRS) extraction from sugarcane bagasse after dilute acid hydrolysis. Waste and Biomass Valorization, 3(1), 81–87.

    Article  CAS  Google Scholar 

  • Bruce, H. L., Wolfe, F. H., Jones, S. D. M., & Price, M. A. (1996). Porosity in cooked beef from controlled atmosphere packaging is caused by rapid CO2 gas evolution. Food Research International, 29(2), 189–193.

    Article  Google Scholar 

  • Cheng, Q., & Sun, D. W. (2008). Factors affecting the water holding capacity of red meat products: a review of recent research advances. Critical Reviews in Food Science and Nutrition, 48(2), 137–159.

    Article  CAS  Google Scholar 

  • Chiralt, A., Fito, P., Barat, J. M., Andres, A., Gonzalez-Martınez, C., Escriche, I., & Camacho, M. M. (2001). Use of vacuum impregnation in food salting process. Journal of Food Engineering, 49(2), 141–151.

    Article  Google Scholar 

  • Chotiko, A., & Sathivel, S. (2016). Development of a combined low-methoxyl-pectin and rice-bran-extract delivery system to improve the viability of Lactobacillus plantarum under acid and bile conditions. LWT-Food Science and Technology, 66, 420–427.

    Article  CAS  Google Scholar 

  • Collignan, A., Bohuon, P., Deumier, F., & Poligne, I. (2001). Osmotic treatment of fish and meat products. Journal of Food Engineering, 49(2), 153–162.

    Article  Google Scholar 

  • Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan-a versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science, 36(8), 981–1014.

    Article  CAS  Google Scholar 

  • Debeaufort, F., Quezada-Gallo, J. A., & Voilley, A. (1998). Edible films and coatings: tomorrow's packagings: a review. Critical Reviews in Food Science, 38(4), 299–313.

    Article  CAS  Google Scholar 

  • Denisov, E. T., & Shestakov, A. F. (2013). Free-radical decarboxylation of carboxylic acids as a concerted abstraction and fragmentation reaction. Kinetics and Catalysis, 54(1), 22–33.

    Article  CAS  Google Scholar 

  • Desai, M. P., Labhasetwar, V., Amidon, G. L., & Levy, R. J. (1996). Gastrointestinal uptake of biodegradable microparticles: effect of particle size. Pharmaceutical Research, 13(12), 1838–1845.

    Article  CAS  Google Scholar 

  • Desai, M. P., Labhasetwar, V., Walter, E., Levy, R. J., & Amidon, G. L. (1997). The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharmaceutical Research, 14(11), 1568–1573.

    Article  CAS  Google Scholar 

  • Deumier, F. (2006). Decontamination of deboned chicken legs by vacuum-tumbling in lactic acid solution. International Journal of Food Science & Technology, 41(1), 23–32.

    Article  CAS  Google Scholar 

  • Deumier, F., Trystram, G., Collignan, A., Guedider, L., & Bohuon, P. (2003). Pulsed vacuum brining of poultry meat: interpretation of mass transfer mechanisms. Journal of Food Engineering, 58(1), 85–93.

    Article  Google Scholar 

  • Fernandez-Urrusuno, R., Calvo, P., Remunan-Lopez, C., Vila-Jato, J. L., & Alonso, M. J. (1999). Enhancement of nasal absorption of insulin using chitosan nanoparticles. Pharmaceutical Research, 16(10), 1576–1581.

    Article  CAS  Google Scholar 

  • Fito, P. (1994). Modelling of vacuum osmotic dehydration of food. Journal of Food Engineering, 22(1), 313–328.

    Article  Google Scholar 

  • Fito, P., & Pastor, R. (1994). Non-diffusional mechanisms occurring during vacuum osmotic dehydration. Journal of Food Engineering, 21(4), 513–519.

    Article  Google Scholar 

  • Fito, P., Chiralt, A., Barat, J. M., Spiess, W., & Behsnilian, D. (2001). Osmotic dehydration and vacuum impregnation: applications in food industries. Lancaster, PA: Technomic Publishing Company, Inc..

    Book  Google Scholar 

  • Gan, Q., Wang, T., Cochrane, C., & McCarron, P. (2005). Modulation of surface charge, particle size and morphological properties of chitosan–TPP nanoparticles intended for gene delivery. Colloids and Surfaces B: Biointerfaces, 44(2–3), 65–73.

    Article  CAS  Google Scholar 

  • Gronroos, A., Pirkonen, P., Heikkinen, J., Ihalainen, J., Mursunen, H., & Sekki, H. (2001). Ultrasonic depolymerization of aqueous polyvinyl alcohol. Ultrasonics Sonochemistry, 8(3), 259–264.

    Article  CAS  Google Scholar 

  • Hwang, J. K., & Shin, H. H. (2000). Rheological properties of chitosan solutions. Korea-Australia Rheology Journal, 12(3–4), 175–179.

    Google Scholar 

  • ICMSF (1986). Sampling for microbiological analysis: principles and scientific applications. In Microorganisms in Foods (pp. 181–196). Toronto, Canada: University of Toronto Press.

  • Imoto, T., & Yagishita, K. (1971). A simple activity measurement of lysozyme. Agricultural and Biological Chemistry, 35(7), 1154–1156.

    Article  CAS  Google Scholar 

  • Jarry, C., Chaput, C., Chenite, A., Renaud, M. A., Buschmann, M., & Leroux, J. C. (2001). Effects of steam sterilization on thermogelling chitosan-based gels. Journal of Biomedical Materials Research, 58(1), 127–135.

    Article  CAS  Google Scholar 

  • Jo, C., Lee, J. W., Lee, K. H., & Byun, M. W. (2001). Quality properties of pork sausage prepared with water-soluble chitosan oligomer. Meat Science, 59(4), 369–375.

    Article  CAS  Google Scholar 

  • Kasaai, M. R. (2007). Calculation of Mark–Houwink–Sakurada (MHS) equation viscometric constants for chitosan in any solvent–temperature system using experimental reported viscometric constants data. Carbohydrate Polymers, 68(3), 477–488.

    Article  CAS  Google Scholar 

  • Kim, K. W., & Thomas, R. L. (2007). Antioxidative activity of chitosans with varying molecular weights. Food Chemistry, 101(1), 308–313.

    Article  CAS  Google Scholar 

  • Lan, J., Yang, Y., & Li, X. (2004). Microstructure and microhardness of SiC nanoparticles reinforced magnesium composites fabricated by ultrasonic method. Materials Science and Engineering: A, 386(1), 284–290.

    Article  Google Scholar 

  • Lenart, A., & Flink, J. M. (1984). Osmotic concentration of potato II, spatial distribution of the osmotic effect. Journal of Food Technology, 19(1), 65–89.

    Article  Google Scholar 

  • Li, J., & Huang, Q. (2012). Rheological properties of chitosan-tripolyphosphate complexes: from suspensions to microgels. Carbohydrate Polymers, 87(2), 1670–1677.

    Article  CAS  Google Scholar 

  • Lin, G. C., Mittal, G. S., & Barbut, S. (1990). Effects of tumbling speed and cumulative revolutions on restructured hams' quality. Journal of Food Processing and Preservation, 14(6), 467–479.

    Article  Google Scholar 

  • Mark, D., Haeberle, S., Zengerle, R., Ducree, J., & Vladisavljevic, G. T. (2009). Manufacture of chitosan microbeads using centrifugally driven flow of gel-forming solutions through a polymeric micronozzle. Journal of Colloid and Interface Science, 336(2), 634–641.

    Article  CAS  Google Scholar 

  • Mohanraj, V., & Chen, Y. (2007). Nanoparticles-a review. Tropical Journal of Pharmaceutical Research, 5(1), 561–573.

  • No, H. K., Kim, S. D., Kim, D. S., Kim, S. J., & Meyers, S. P. (1999). Effect of physical and chemical treatments on chitosan viscosity. Journal of Chitin and Chitosan, 4(4), 177–183.

    Google Scholar 

  • Parallel Food Testing in the European Union (1995). Fish. London: International Consumer Research and Testing Limited.

    Google Scholar 

  • Price, J. F., & Schweigert, B. S. (1987). The science of meat and meat products. Westport, CN: Food and Nutrition Press.

    Google Scholar 

  • Qaqish, R., & Amiji, M. (1999). Synthesis of a fluorescent chitosan derivative and its application for the study of chitosan-mucin interactions. Carbohydrate Polymers, 38(2), 99–107.

    Article  CAS  Google Scholar 

  • Qi, L., Xu, Z., Jiang, X., Hu, C., & Zou, X. (2004). Preparation and antibacterial activity of chitosan nanoparticles. Carbohydrate Research, 339(16), 2693–2700.

    Article  CAS  Google Scholar 

  • Raafat, D., & Sahl, H. G. (2009). Chitosan and its antimicrobial potential—a critical literature survey. Microbial Biotechnology, 2(2), 186–201.

    Article  CAS  Google Scholar 

  • Rahman, M. S. (2007). Handbook of food preservation: CRC press.

  • Rampino, A., Borgogna, M., Blasi, P., Bellich, B., & Cesaro, A. (2013). Chitosan nanoparticles: preparation, size evolution and stability. International Journal of Pharmaceutics, 455(1–2), 219–228.

    Article  CAS  Google Scholar 

  • Raoult-Wack, A. L. (1994). Recent advances in the osmotic dehydration of foods. Trends in Food Science & Technology, 5(8), 255–260.

    Article  Google Scholar 

  • Rastogi, N. K., & Raghavarao, K. S. M. S. (1996). Kinetics of osmotic dehydration under vacuum. LWT-Food Science and Technology, 29(7), 669–672.

    Article  CAS  Google Scholar 

  • Rejt, J., Kubicka, H., & Pisula, A. (1978). Changes of physical and chemical properties and of histological structure of meat subjected to massage under vacuum. Meat Science, 2(2), 145–153.

    Article  CAS  Google Scholar 

  • Rhoades, J., & Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology, 66(1), 80–86.

    Article  CAS  Google Scholar 

  • Roa, V., Tapia, M. S., & Millan, F. (2001). Mass balances in porous foods impregnation. Journal of Food Science, 66(9), 1332–1336.

    Article  CAS  Google Scholar 

  • Sathivel, S., Liu, Q., Huang, J., & Prinyawiwatkul, W. (2007). The influence of chitosan glazing on the quality of skinless pink salmon (Oncorhynchus gorbuscha) fillets during frozen storage. Journal of Food Engineering, 83(3), 366–373.

    Article  CAS  Google Scholar 

  • Savitri, E., Juliastuti, S. R., Handaratri, A., Sumarno, & Roesyadi, A. (2014). Degradation of chitosan by sonication in very-low-concentration acetic acid. Polymer Degradation and Stability, 110(0), 344–352.

    Article  CAS  Google Scholar 

  • Seo, S. W. (2006). Depolymerization and decolorization of chitosan by ozone treatment. Master's thesis, Louisiana State University.

  • Smulders, F. J., & Woolthuis, C. H. (1985). Immediate and delayed microbiological effects of lactic acid decontamination of calf carcasses-influence on conventionally boned versus hot-boned and vacuum-packaged cuts. Journal of Food Protection, 48(10), 838–847.

    Article  CAS  Google Scholar 

  • Solomon, L. W., Norton, H. W., & Schmidt, G. R. (1980). Effect of vacuum and rigor condition on cure absorption in tumbled porcine muscles. Journal of Food Science, 45(3), 438–440.

    Article  Google Scholar 

  • Solval, K. M., Espinoza Rodezno, L. A., Moncada, M., Bankston, J. D., & Sathivel, S. (2014). Evaluation of chitosan nanoparticles as a glazing material for cryogenically frozen shrimp. LWT-Food Science and Technology, 57(1), 172–180.

    Article  CAS  Google Scholar 

  • Song, C., Labhasetwar, V., Cui, X., Underwood, T., & Levy, R. J. (1998). Arterial uptake of biodegradable nanoparticles for intravascular local drug delivery: results with an acute dog model. Journal of Controlled Release, 54(2), 201–211.

    Article  CAS  Google Scholar 

  • Theno, D. M., Siegel, D. G., & Schmidt, G. R. (1978). Meat massaging: effects of salt and phosphate on the ultrastructure of cured porcine muscle. Journal of Food Science, 43(2), 488–492.

    Article  CAS  Google Scholar 

  • Toei, K., & Kohara, T. (1976). A conductometric method for colloid titrations. Analytica Chimica Acta, 83, 59–65.

    Article  CAS  Google Scholar 

  • Tomasik, P., & Zaranyika, M. F. (1995). Nonconventional methods of modification of starch. In Advances in Carbohydrate Chemistry and Biochemistry (pp. 243–318). London, UK: Academic Press Limited.

  • Tsai, G. J., Su, W. H., Chen, H. C., & Pan, C. L. (2002). Antimicrobial activity of shrimp chitin and chitosan from different treatments and applications of fish preservation. Fisheries Science, 68(1), 170–177.

    Article  CAS  Google Scholar 

  • Tsai, M. L., Bai, S. W., & Chen, R. H. (2008). Cavitation effects versus stretch effects resulted in different size and polydispersity of ionotropic gelation chitosan-sodium tripolyphosphate nanoparticle. Carbohydrate Polymers, 71(3), 448–457.

    Article  CAS  Google Scholar 

  • Tsaih, M. L., Tseng, L. Z., & Chen, R. H. (2004). Effects of removing small fragments with ultrafiltration treatment and ultrasonic conditions on the degradation kinetics of chitosan. Polymer Degradation and Stability, 86(1), 25–32.

    Article  CAS  Google Scholar 

  • Vareltzis, K., Soultos, N., Koidis, P., Ambrosiadis, J., & Genigeorgis, C. (1997). Antimicrobial effects of sodium tripolyphosphate against bacteria attached to the surface of chicken carcasses. LWT—Food Science and Technology, 30(7), 665–669.

    CAS  Google Scholar 

  • Xie, W., Xu, P., & Liu, Q. (2001). Antioxidant activity of water-soluble chitosan derivatives. Bioorganic & Medicinal Chemistry Letters, 11(13), 1699–1701.

    Article  CAS  Google Scholar 

  • Xu, Y., & Du, Y. (2003). Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. International Journal of Pharmaceutics, 250(1), 215–226.

    Article  CAS  Google Scholar 

  • Yen, M. T., Yang, J. H., & Mau, J. L. (2008). Antioxidant properties of chitosan from crab shells. Carbohydrate Polymers, 74(4), 840–844.

    Article  CAS  Google Scholar 

  • Zheng, L. Y., & Zhu, J. F. (2003). Study on antimicrobial activity of chitosan with different molecular weights. Carbohydrate Polymers, 54(4), 527–530.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subramaniam Sathivel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouljenko, A., Chotiko, A., Solval, M.J.M. et al. Chitosan Nanoparticle Penetration into Shrimp Muscle and its Effects on the Microbial Quality. Food Bioprocess Technol 10, 186–198 (2017). https://doi.org/10.1007/s11947-016-1805-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1805-z

Keywords

Navigation