Skip to main content
Log in

Comparison of Different Mechanical Methods for the Modification of the Egg White Protein Ovomucin, Part B: Molecular Aspects

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

It is indispensable to modify the physical properties of egg white prior to a fractionation of the included bio-functional proteins. It was already demonstrated that this can be realized with mechanical devices. However, until now, it was not clear by which kind of molecular changes this is accompanied. Thus, this study reports on the molecular changes in egg white proteins induced by various mechanical treatments (high-pressure homogenizer, colloid mill, toothed disc dispersing machine). Evaluation criteria were the particle size of the long-chain protein ovomucin, the content of thiol groups, and disulfide bridges in egg white as well as the amount of free lysozyme. In general, it was shown that these treatments led to changes in the molecular structure and that the obtained modifications were more pronounced the higher the applied energy was. In detail, it was found that the applied mechanical forces in the experimental range of this study were able to disrupt strong covalent bonds in the fibrillar protein ovomucin. Additionally, the bio-functional protein lysozyme that is partly entrapped in the natural egg white structure was released by the applied forces. Summing up, this study generates comprehensive knowledge concerning the underlying mechanisms that enable the release of lysozyme as well as the use of egg white for fractionation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arzeni, C., Pérez, O. E., & Pilosof, A. M. R. (2012). Functionality of egg white proteins as affected by high intensity ultrasound. Food Hydrocolloids. doi:10.1016/j.foodhyd.2012.03.009.

    Google Scholar 

  • Brand, J., Pichler, M., & Kulozik, U. (2014). Enabling egg white protein fractionation processes by pre-treatment with high-pressure homogenization. Journal of Food Engineering. doi:10.1016/j.jfoodeng.2014.02.012.

    Google Scholar 

  • Brand, J., Silberbauer, A., & Kulozik, U. (2015). Comparison of different mechanical methods for the modification of the egg white protein ovomucin, part A: physical effects. Food and Bioprocess Technology. doi:10.1007/s11947-015-1647-0.

    Google Scholar 

  • Croguennec, T., Nau, F., Pezennec, S., Piot, M., & Brulé, G. (2001). Two-step chromatographic procedure for the preparation of hen egg white ovotransferrin. European Food Research and Technology, 212(3), 296–301.

    Article  CAS  Google Scholar 

  • Donovan, J. W., Davis, J. G., & White, L. M. (1970). Chemical and physical characterization of ovomucin, a sulfated glycoprotein complex from chicken eggs. Biochimica et Biophysica Acta (BBA) - Protein Structure. doi:10.1016/0005-2795(70)90151-0.

    Google Scholar 

  • Dumay, E., Chevalier-Lucia, D., Picart-Palmade, L., Benzaria, A., Gràcia-Julià, A., & Blayo, C. (2013). Technological aspects and potential applications of (ultra) high-pressure homogenisation. Trends in Food Science & Technology. doi:10.1016/j.tifs.2012.03.005.

    Google Scholar 

  • Floury, J., Desrumaux, A., Axelos, M. A. V., & Legrand, J. (2002). Degradation of methylcellulose during ultra-high pressure homogenisation. Food Hydrocolloids, 16(1), 47–53. doi:10.1016/S0268-005X(01)00039-X.

  • Floury, J., Desrumaux, A., Axelos, M. A. V., & Legrand, J. (2003). Effect of high pressure homogenisation on methylcellulose as food emulsifier. Journal of Food Engineering, 58(3), 227–238. doi:10.1016/S0260-8774(02)00372-2.

  • Floury, J., Bellettre, J., Legrand, J., & Desrumaux, A. (2004). Analysis of a new type of high pressure homogeniser. A study of the flow pattern. Chemical Engineering Science. doi:10.1016/j.ces.2003.11.017.

    Google Scholar 

  • Guérin-Dubiard, C., Pasco, M., Hietanen, A., Quiros del Bosque, A., Nau, F., & Croguennec, T. (2005). Hen egg white fractionation by ion-exchange chromatography. Journal of Chromatography A, 1090(1–2), 58–67.

    Article  Google Scholar 

  • Hansen, R. E., Østergaard, H., Nørgaard, P., & Winther, J. R. (2007). Quantification of protein thiols and dithiols in the picomolar range using sodium borohydride and 4,4′-dithiodipyridine. Analytical Biochemistry. doi:10.1016/j.ab.2007.01.002.

    Google Scholar 

  • Hayakawa, S., & Sato, Y. (1978). Subunit structures of sonicated α and β-ovomucin and their molecular weights estimated by sedimentation equilibrium. Agricultural and Biological Chemistry. doi:10.1080/00021369.1978.10863093.

    Google Scholar 

  • Hiidenhovi, J. (2007). Chapter 9 ovomucin. In R. Huopalathi (Ed.), Bioactive egg compounds (pp. 61–68). Heidelberg: Springer-Verlag Berlin [New York].

    Chapter  Google Scholar 

  • Itoh, T., Miyazaki, J., Sugawara, H., & Adachi, S. (1987). Studies on the characterization of ovomucin and chalaza of the hen’s egg. Journal of Food Science. doi:10.1111/j.1365-2621.1987.tb05868.x.

    Google Scholar 

  • Jafari, S. M., Assadpoor, E., He, Y., & Bhandari, B. (2008). Re-coalescence of emulsion droplets during high-energy emulsification. Food Hydrocolloids. doi:10.1016/j.foodhyd.2007.09.006.

    Google Scholar 

  • Karbstein, H. (1994). Untersuchungen zum Herstellen und Stabilisieren von Öl-in-Wasser-Emulsionen. Dissertation. Karlsruhe: Technische Hochschule.

  • Karbstein, H., & Schubert, H. (1995). Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chemical Engineering and Processing: Process Intensification. doi:10.1016/0255-2701(94)04005-2.

    Google Scholar 

  • Kato, A., Nakamura, R., & Sato, Y. (1971). Studies on changes in stored shell eggs. Agricultural and Biological Chemistry. doi:10.1271/bbb1961.35.351.

    Google Scholar 

  • Köhler, K. (Ed.). (2012). Emulgiertechnik: Grundlagen, Verfahren und Anwendungen (3rd ed.). Hamburg: Behr.

    Google Scholar 

  • Messens, W., van Camp, J., & Huyghebaert, A. (1997). The use of high pressure to modify the functionality of food proteins. Trends in Food Science & Technology. doi:10.1016/S0924-2244(97)01015-7.

    Google Scholar 

  • Mortimer, C. E., & Müller, U. (2010). Chemie: Das Basiswissen der Chemie; … 128 Tabellen (10th ed.). Stuttgart: Thieme.

    Google Scholar 

  • Omana, D. A., Wang, J., & Wu, J. (2010a). Co-extraction of egg white proteins using ion-exchange chromatography from ovomucin-removed egg whites. Journal of Chromatography B, 878(21), 1771–1776.

    Article  CAS  Google Scholar 

  • Omana, D. A., Wang, J., & Wu, J. (2010b). Ovomucin—a glycoprotein with promising potential. Trends in Food Science & Technology. doi:10.1016/j.tifs.2010.07.001.

    Google Scholar 

  • Panozzo, A., Manzocco, L., Calligaris, S., Bartolomeoli, I., Maifreni, M., Lippe, G., et al. (2014). Effect of high pressure homogenisation on microbial inactivation, protein structure and functionality of egg white. Food Research International. doi:10.1016/j.foodres.2014.04.051.

    Google Scholar 

  • Rabouille, C., Aon, M. A., Muller, G., Cartaud, J., Thomas, D., Rabouille, C., Aon, M. A., Muller, G., Cartaud, J., & Thomas, D. (1990). The supramolecular organization of ovomucin. Biophysical and morphological studies. Biochemistry Journal, 266, 697–706.

    Article  CAS  Google Scholar 

  • Robinson, D. S., & Monsey, J. B. (1971). Studies on the composition of egg-white ovomucin. Biochemistry Journal, 121, 537–547.

    Article  CAS  Google Scholar 

  • Schlender, M., Minke, K., Spiegel, B., & Schuchmann, H. P. (2015). High-pressure double stage homogenization processes: influences of plant setup on oil droplet size. Chemical Engineering Science. doi:10.1016/j.ces.2015.03.055.

    Google Scholar 

  • Schuchmann, H. P. (2005). Lebensmittelverfahrenstechnik: Rohstoffe, Prozesse, Produkte. Weinheim: Wiley-VCH.

    Book  Google Scholar 

  • Schultz, S., Wagner, G., Urban, K., & Ulrich, J. (2004). High-pressure homogenization as a process for emulsion formation. Chemical Engineering & Technology. doi:10.1002/ceat.200406111.

    Google Scholar 

  • Stang, M., Schuchmann, H., & Schubert, H. (2001). Emulsification in high-pressure homogenizers. Engineering in Life Sciences. doi:10.1002/1618-2863(200110)1:4<151:AID-ELSC151>3.0.CO;2-D.

    Google Scholar 

  • Strixner, T., & Kulozik, U. (2011). Kapitel 7: egg proteins. In G. Philips & P. Williams (Eds.), Handbook of food proteins. Cambridge: Woodhead Publishing Ltd.

    Google Scholar 

  • Subirade, M., Loupil, F., Allain, A.-F., & Paquin, P. (1998). Effect of dynamic high pressure on the secondary structure of β-lactoglobulin and on its conformational properties as determined by Fourier transform infrared spectroscopy. International Dairy Journal. doi:10.1016/S0958-6946(98)00034-X.

    Google Scholar 

  • Ternes, W., Acker, L., & Scholtyssek, S. (1994). Ei und Eiprodukte. Berlin: P. Parey.

    Google Scholar 

  • Urban, K., Wagner, G., Schaffner, D., Röglin, D., & Ulrich, J. (2006). Rotor-stator and disc systems for emulsification processes. Chemical Engineering & Technology. doi:10.1002/ceat.200500304.

    Google Scholar 

  • Wang, J., & Wu, J. (2014). An improved method to extract and purify cystatin from hen egg white. Journal of Chromatography B. doi:10.1016/j.jchromb.2014.05.049.

    Google Scholar 

Download references

Acknowledgments

Experimental help by Claudia Hengst is gratefully acknowledged. This research project was supported by the German Ministry of Economics and Technology (via AiF) and the FEI (Forschungskreis der Ernährungsindustrie e.V., Bonn). Project AiF 17479 N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janina Brand.

Additional information

Highlights

• The ovomucin network is diminished by mechanical forces.

• The thiol group to disulfide bond ratio in egg white is modified by mechanical treatments.

• Mechanical forces are strong enough to disrupt covalent bonds in long-chain molecules.

• Lysozyme is released by mechanical energy input.

• The higher the applied energy density, the more molecular changes result.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brand, J., Kulozik, U. Comparison of Different Mechanical Methods for the Modification of the Egg White Protein Ovomucin, Part B: Molecular Aspects. Food Bioprocess Technol 9, 1210–1218 (2016). https://doi.org/10.1007/s11947-016-1711-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-016-1711-4

Keywords

Navigation