Skip to main content
Log in

Spray-Drying of Probiotic Cashew Apple Juice

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Data on spray-drying of fruit juices containing probiotic bacteria are scarce. The main challenge is to avoid the viability losses of the microorganism during drying and storage. In the presented study, the dehydration by spray-drying of cashew apple juice containing Lactobacillus casei NRRL B-442, and the influence of the storage temperature (25 and 4 °C) on the viability of L. casei NRRL B-442 and on the physical properties of the powder during 35 days of storage were evaluated. Probiotic cashew apple juice was dehydrated according to the following conditions: inlet temperature of the drying air (120 °C), feed flow rate of juice (0.3 L/h), hot air flow (3.0 m3/min), and pressurized air flow (30 L/min). The outlet temperature was 75 °C. The carriers used were 20 % (w/v) maltodextrin or 10 % (w/v) maltodextrin + 10 % (w/v) gum arabic. Microbial survival rates higher than 90 % were obtained for the powder stored at 4 °C for 35 days (both carriers) and higher than 70 % up to 21 days for the powder obtained using only maltodextrin at 25 °C. Higher yields were obtained only by maltodextrin which was used as carrier (72 %) compared to the yield obtained when the mixture of maltodextrin and gum arabic was applied (60 %). The water activity was kept low (Aw < 0.30) during the storage, and the characteristic color of the product was maintained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anal, A. K., & Singh, H. (2007). Recent advances in microencapsulation of probiotics for industrial applications and targeted delivery. Trends in Food Science and Technology, 18, 240–251.

    Article  CAS  Google Scholar 

  • Ananta, E., Volkert, M., & Knorr, D. (2005). Cellular injuries and storage stability of spray-dried Lactobacillus rhamnosus GG. International Dairy Journal, 15, 399–409.

    Article  CAS  Google Scholar 

  • Chávarri, M., Marañón, I., Ares, R., Ibáñez, F. C., Marzo, F., & Villarán, M. D. C. (2010). Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. International Journal of Food Microbiology, 142, 185–189.

    Article  Google Scholar 

  • Chavez, B. E., & Ledeboer, A. M. (2007). Drying of probiotics: optimization of formulation and process to enhance storage survival. Drying Technology, 25, 1193–1201.

    Article  CAS  Google Scholar 

  • Chegini, G. R., & Ghobadian, B. (2005). Effect of spray drying conditions on physical properties of orange juice powder. Drying Technology, 23, 657–668.

    Article  CAS  Google Scholar 

  • Comunian, T. A., Monterrey-Quintero, E. S., Thomazini, M., Balieiro, J. C. C., Piccone, P., Pittia, P., et al. (2011). Assessment of production efficiency, physicochemical properties and storage stability of spray-dried chlorophyllide, a natural food colourant, using gum arabic, maltodextrin and soy protein isolate-based carrier systems. International Journal of Food Science and Technology, 46, 1259–1265.

    Article  CAS  Google Scholar 

  • Desmond, C., Stanton, C., Fitzgerald, G. F., Collins, K., & Ross, R. P. (2002). Environmental adaptation of probiotic Lactobacilli towards improvement of performance during spray drying. International Dairy Journal, 12, 183–190.

    Article  CAS  Google Scholar 

  • FAO/WHO. (2003). Standard for fermented milks. Codex standard 243 (pp. 1–8). FAO/WHO: Rome.

    Google Scholar 

  • Foerst, P., Kulozik, U., Schmitt, M., Bauer, S., & Santivarangkna, C. (2012). Storage stability of vacuum-dried probiotic bacterium Lactobacillus paracasei F19. Food and Bioproducts Processing, 90, 295–300.

    Article  CAS  Google Scholar 

  • Garcha, S., Kaurani, L., & Production of non dairy probiotic foods. (2011). Asian Journal of Microbiology. Biotechnology and Environmental Sciences, 13, 565–568.

    Google Scholar 

  • Goula, A. M., & Adamopoulos, K. G. (2010). A new technique for spray drying orange juice concentrate. Innovative Food Science and Emerging Technologies, 11, 342–351.

    Article  CAS  Google Scholar 

  • Kearney, N., Meng, X. C., Stanton, C., Kelly, J., Fitzgerald, G. F., & Ross, R. P. (2009). Development of a spray dried probiotic yoghurt containing Lactobacillus paracasei NFBC 338. International Dairy Journal, 19, 684–689.

    Article  CAS  Google Scholar 

  • Kurtmann, L., Carlsen, C. U., Risbo, J., & Skibsted, L. H. (2009). Storage stability of freeze-dried Lactobacillus acidophilus (La-5) in relation to water activity and presence of oxygen and ascorbate. Cryobiology, 58, 175–180.

    Article  CAS  Google Scholar 

  • Lian, W. C., Hsiao, H. C., & Chou, C. C. (2002). Survival of bifidobacteria after spray-drying. International Journal of Food Microbiology, 74, 79–86.

    Article  Google Scholar 

  • Mestry, A. P., Mujumdar, A. S., & Thorat, B. N. (2011). Optimization of spray drying of an innovative functional food: fermented mixed juice of carrot and watermelon. Drying Technology, 29, 1121–1131.

    Article  CAS  Google Scholar 

  • Nadeem, H. S., Torun, M., & Ozdemir, F. (2011). Spray drying of the mountain tea (Sideritis stricta) water extract by using different hydrocolloid carriers. LWT - Food Science and Technology, 44, 1626–1635.

    Article  Google Scholar 

  • Peighambardoust, S. H., Golshan Tafti, A. E., & Hesari, J. (2011). Application of spray drying for preservation of lactic acid starter cultures: a review. Trends in Food Science & Technology, 22, 215–224.

    Article  CAS  Google Scholar 

  • Pereira, A. L. F., Maciel, T. C., & Rodrigues, S. (2011). Probiotic beverage from cashew apple juice fermented with Lactobacillus casei. Food Research International, 44, 1276–1283.

    Article  CAS  Google Scholar 

  • Pereira, A. L. F., Almeida, F. D. L., Jesus, A. L. T., & Rodrigues, S. (2013). Storage stability of probiotic beverage from cashew apple juice. Food Bioprocess Technology, 6, 3155–3165.

    Article  CAS  Google Scholar 

  • Quek, S. Y., Chok, N. K., & Swedlund, P. (2007). The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing, 46, 386–392.

    Article  CAS  Google Scholar 

  • Reddy, K. B. P. K., Madhu, A. N., & Prapulla, S. G. (2009). Comparative studies and evaluation of functional properties of spray-dried lactic acid bacteria. International Journal of Dairy Technology, 62, 240–248.

    Article  Google Scholar 

  • Schutyser, M. A. I., Perdana, J., & Boom, R. M. (2012). Single droplet drying for optimal spray drying of enzymes and probiotics. Trends in Food Science & Technology, 27, 73–82.

    Article  CAS  Google Scholar 

  • Semyonov, D., Ramon, O., & Shimoni, E. (2011). Using ultrasonic vacuum spray dryer to produce highly viable dry probiotics. LWT - Food Science and Technology, 44, 1844–1852.

    Article  CAS  Google Scholar 

  • Sheehan, V. M., Ross, P., & Fitzgerald, G. F. (2007). Assessing the acid tolerance and the technological robustness of probiotic cultures for fortification in fruit juices. Innovative Food Science & Emerging Technologies, 8, 279–284.

    Article  CAS  Google Scholar 

  • Shrestha, A. K., Ua-Arak, T., Adhikari, B. P., Howes, T., & Bhandari, B. R. (2007). Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). International Journal of Food Properties, 10, 661–673.

    Article  CAS  Google Scholar 

  • Silva, J., Freixo, R., Gibbs, P., & Teixeira, P. (2011). Spray-drying for the production of dried cultures. International Journal of Dairy Technology, 64, 321–335.

    Article  CAS  Google Scholar 

  • Truong, V., Bhandari, B. R., & Howes, T. (2005). Optimization of concurrent spray drying process for sugar rich foods: Part II—optimization of spray drying process based on glass transition. Journal of Food Engineering, 71, 66–72.

    Article  Google Scholar 

  • Vinderola, C. G., & Reinheimer, J. A. (2000). Enumeration of Lactobacillus casei in the presence of L. acidophilus, bifidobacteria and lactic starter bacteria in fermented dairy products. International Dairy Journal, 10, 271–275.

    Article  Google Scholar 

  • Wirjantoro, T. I., & Phianmongkhol, A. (2009). The viability of lactic acid bacteria and Bifidobacterium bifidum in yoghurt powder during storage. Journal of Natural Sciences, 8, 95–104.

    Google Scholar 

  • Yu, C., Wang, W., Yao, H., & Lius, H. (2007). Preparation of phospholipids microcapsule by spray drying. Drying Technology, 25, 695–702.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq for the financial support through the National Institute of Science and Technology of Tropical Fruit, CAPES for the fellowships, and ARS Culture Collection for the L. casei strain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sueli Rodrigues.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A.L.F., Almeida, F.D.L., Lima, M.A. et al. Spray-Drying of Probiotic Cashew Apple Juice. Food Bioprocess Technol 7, 2492–2499 (2014). https://doi.org/10.1007/s11947-013-1236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1236-z

Keywords

Navigation