Skip to main content
Log in

Layer-by-Layer Electrostatic Deposition of Edible Coating on Fresh Cut Melon Model: Anticipated and Unexpected Effects of Alginate–Chitosan Combination

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Edible coatings attract interest today as efficient and safe techniques for controlling the deterioration and extending the shelf-life of food products. In the present study, a layer-by-layer (LbL) electrostatic deposition of oppositely charged natural polysaccharides, a polyanion alginate and a polycation chitosan, was implemented for coating a model food: fresh-cut melon. The performance of the alginate–chitosan coating was compared with single-layer coatings and with non-coated control. The LbL coating was found to possess the beneficial properties of both ingredients, combining good adhesion to melon matrix of the inner alginate layer with antimicrobial activity of the outer chitosan layer, thereby reducing the bacteria, yeast, and fungi counts by 1–2 log CFU. The bilayer coating slowed down tissue texture degradation, so that after 14 days of storage only LbL samples maintained an appreciable firmness. An unexpected benefit of the LbL coating was that its enhanced gas-exchange properties exceeded those of both monolayer coatings and even of the non-coated control. As a result, the LbL coating prevented an increase in headspace CO2 and ethanol concentrations, which are the signs of hypoxic stress and off-flavor development observed in other samples, especially in alginate-coated melons. The phenomenon was presumably related to swelling behavior of the chitosan layer in the humid atmosphere of the fresh-cut melon package, giving the melon pieces an attractive succulent appearance. At the same time, the LbL coating resulted in somewhat increased produce weight loss due to the reduced surface water vapor resistance. The method is cheap, simple, and can improve the quality and safety of food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baldwin, E. A., Hagenmaier, R., & Bai, J. (2011). Edible coatings and films to improve food quality (2nd ed.). Boca Raton: CRC.

    Google Scholar 

  • Baldwin, E. A., Burns, J. K., Kazokas, W., Brecht, J. K., Hagenmaier, R. D., Bender, R. J., et al. (1999). Effect of two edible coatings with different permeability characteristics on mango (Mangifera indica L.) ripening during storage. Postharvest Biology and Technology, 17(3), 215–226.

    Article  CAS  Google Scholar 

  • Ben-Yehoshua, S., Burg, S. P., & Young, R. (1985). Resistance of citrus fruit to mass transport of water vapor and other gases. Plant Physiology, 79(4), 1048–1053.

    Article  CAS  Google Scholar 

  • Brasil, I. M., Gomes, C., Puerta-Gomez, A., Castell-Perez, M. E., & Moreira, R. G. (2012). Polysaccharide-based multilayered antimicrobial edible coating enhances quality of fresh-cut papaya. LWT—Food Science and Technology, 47(1), 39–45.

    CAS  Google Scholar 

  • Campos, C. A., Gerschenson, L. N., & Flores, S. K. (2011). Development of edible films and coatings with antimicrobial activity. Food and Bioprocess Technology, 4(6), 849–875.

    Article  CAS  Google Scholar 

  • Chen, J. (2002). Microbial enzymes associated with fresh-cut produce. In Lamikanra (Ed.), Fresh-cut fruits and vegetables: science, technology and market (pp. 249–266). Boca Raton: CRC.

    Google Scholar 

  • Cissé, M., Kouakou, A. C., Montet, D., Loiseau, G., & Ducamp-Collin, M. N. (2013). Antimicrobial and physical properties of edible chitosan films enhanced by lactoperoxidase system. Food Hydrocolloids, 30(2), 576–580.

    Article  Google Scholar 

  • Cook, R. (2011). Trends in the marketing of fresh produce and fresh-cut products, University of California Davis, USA. Available at: ucce.ucdavis.edu/files/datastore/234-2115.pdf.

  • Corbo, M. R., Speranza, B., Campaniello, D., D’Amato, D., & Sinigaglia, M. (2010). Fresh-cut fruits preservation: current status and emerging technologies. In V. Méndez (Ed.), Current research technology and education topic in applied microbiology and microbial biotechnology (pp. 1143–1154). Badajoz, Spain: Formatex Research Center.

    Google Scholar 

  • Decher, G. (1997). Fuzzy nanoassemblies toward layered polymeric multicomposites. Science, 277(5330), 1232–1237.

    Article  CAS  Google Scholar 

  • Dhall, R. K. (2013). Advances in edible coatings for fresh fruits and vegetables: a review. Critical Reviews in Food Science and Nutrition, 53(5), 435–450.

    Article  CAS  Google Scholar 

  • Dutta, P. K., Tripathi, S., Mehrotra, G. K., & Dutta, J. (2009). Perspectives for chitosan based antimicrobial films in food applications. Food Chemistry, 114(4), 1173–1182.

    Article  CAS  Google Scholar 

  • Falguera, V., Quintero, J. P., Jimenez, A., Munoz, J. A., & Ibarz, A. (2011). Edible films and coatings structures, active functions and trends in their use. Trends in Food Science and Technology, 22(6), 292–303.

    Article  CAS  Google Scholar 

  • Fallik, E., Shalom, Y., Alkalai-Tuvia, S., Larkov, O., Brandeis, E., & Ravid, U. (2005). External, internal and sensory traits in Galia-type melon treated with different waxes. Postharvest Biology and Technology, 36(1), 69–75.

    Article  CAS  Google Scholar 

  • Fernandez-Salguero, J., Gómez, R., & Carmona, M. A. (1993). Water activity in selected high-moisture foods. Journal of Food Composition and Analysis, 6(4), 364–369.

    Article  Google Scholar 

  • Ferrari, C. C., Sarantopoulos, C. I. G. L., Carmello-Guerreiro, S. M., & Hubinger, M. D. (2011). Effect of osmotic dehydration and pectin edible coatings on quality and shelf life of fresh-cut melon. Food and Bioprocess Technology, 6(1), 80–91.

    Article  Google Scholar 

  • Gomes, A. P., Mano, J. F., Queiroz, J. A., & Gouveia, I. C. (2012). Layer-by-layer deposition of antibacterial polyelectrolytes on cotton fibres. Journal of Polymers and the Environment, 20(4), 1084–1094.

    Article  CAS  Google Scholar 

  • Guilbert, S., Gontard, N., & Cuq, B. (1995). Technology and applications of edible protective films. Packaging Technology and Science, 8(6), 339–346.

    Article  CAS  Google Scholar 

  • Ham, J. M., & Heilman, J. L. (1991). Aerodynamic and surface resistances affecting energy transport in a sparse crop. Agricultural and Forest Meteorology, 53(4), 267–284.

    Article  Google Scholar 

  • Han, J. H., & Gennadios, A. (2005). Edible films and coatings. A review. In J. H. Han (Ed.), Innovations in food packaging, chapter 15 (pp. 239–262). Amsterdam: Elsevier Academic.

    Chapter  Google Scholar 

  • Hide, J. C. (1954). Observations on factors influencing the evaporation of soil moisture. Soil Science Society of America Journal, 18(3), 234–239.

    Article  Google Scholar 

  • Huber, K. C., & Embuscado, M. E. (2009). Edible films and coatings for food applications. New York: Springer.

    Book  Google Scholar 

  • Ito, A., Sato, M., & Anma, T. (1997). Permeability of CO2 through chitosan membrane swollen by water vapor in feed gas. Die Angewandte Makromolekulare Chemie, 248(1), 85–94.

    Article  CAS  Google Scholar 

  • Jacxsens, L., Devlieghere, F., Ragaert, P., Vanneste, E., & Debevere, J. (2003). Relation between microbiological quality, metabolite production and sensory quality of equilibrium modified atmosphere packaged fresh-cut produce. International Journal of Food Microbiology, 83(3), 263–280.

    Article  CAS  Google Scholar 

  • Kanti, P., Srigowri, K., Madhuri, J., Smitha, B., & Sridhar, S. (2004). Dehydration of ethanol through blend membranes of chitosan and sodium alginate by pervaporation. Separation and Purification Technology, 40(3), 259–266.

    Article  CAS  Google Scholar 

  • Krasaekoopt, W., & Mabumrung, J. (2008). Microbiological evaluation of edible coated fresh-cut cantaloupe. Kasetsart Journal (Natural Sciences), 42(3), 552–557.

    Google Scholar 

  • Kurek, M., Ščetar, M., Voilley, A., Galić, K., & Debeaufort, F. (2012). Barrier properties of chitosan coated polyethylene. Journal of Membrane Science, 403–404, 162–168.

    Article  Google Scholar 

  • Lester, G. (1997). Melon (Cucumis melo L.) fruit nutritional quality and health functionality. HortTechnology, 7(3), 222–227.

    Google Scholar 

  • Luna-Guzmán, I., & Barrett, D. M. (2000). Comparison of calcium chloride and calcium lactate effectiveness in maintaining shelf stability and quality of fresh-cut cantaloupes. Postharvest Biology and Technology, 19(1), 61–72.

    Article  Google Scholar 

  • Medeiros, B. G., de Pinheiro, S. A. C., Carneiro-da-Cunha, M. G., & Vicente, A. A. (2012). Development and characterization of a nanomultilayer coating of pectin and chitosan. Evaluation of its gas barrier properties and application on ‘Tommy Atkins’ mangoes. Journal of Food Engineering, 110(3), 457–464.

    Article  CAS  Google Scholar 

  • Miller, M. D., & Bruening, M. L. (2005). Correlation of the swelling and permeability of polyelectrolyte multilayer films. Chemistry of Materials, 17(21), 5375–5381.

    Article  CAS  Google Scholar 

  • Olivas, G. I., Mattinson, D. S., & Barbosa-Cánovas, G. V. (2007). Alginate coatings for preservation of minimally processed ‘Gala’ apples. Postharvest Biology and Technology, 45(1), 89–96.

    Article  CAS  Google Scholar 

  • Oms-Oliu, G., Soliva-Fortuny, R., & Martín-Belloso, O. (2008). Using polysaccharide-based edible coating to enhance quality and antioxidant properties of fresh-cut melon. LWT—Food Science and Technology, 41(10), 1862–1870.

    CAS  Google Scholar 

  • Pizato, S., Cortez-Vega, W. R., de Souza, J. T. A., Prentice-Hernandez, C., & Borges, C. D. (2013). Effects of different edible coatings on physical, chemical and microbiological characteristics of minimally processed peaches (Prunus persica L. Batsch). Journal of Food Safety, 33(1), 30–39.

    Article  Google Scholar 

  • Raybaudi-Massilia, R. M., Mosquelda-Melgar, J., & Martín-Belloso, O. (2008). Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melons. International Journal of Food Microbiology, 121(3), 313–327.

    Article  CAS  Google Scholar 

  • Rhoades, J., & Roller, S. (2000). Antimicrobial actions of degraded and native chitosan against spoilage organisms in laboratory media and foods. Applied and Environmental Microbiology, 66(1), 80–86.

    Article  CAS  Google Scholar 

  • Ribeiro, A. J., Silva, C., Ferreira, D., & Veiga, A. (2005). Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Sciences, 25(1), 31–40.

    Article  CAS  Google Scholar 

  • Rojas-Graü, M. A., Tapia, M. S., Rodríguez, F. J., Carmona, A. J., & Martín-Belloso, O. (2007). Alginate and gellan-based edible coatings as carriers of antibrowning agents applied on fresh-cut Fuji apples. Food Hydrocolloids, 21(1), 118–127.

    Article  Google Scholar 

  • Sangsuwan, J., Rattanapanone, N., & Rachtanapun, P. (2008). Effect of chitosan/methyl cellulose films on microbial and quality characteristics of fresh-cut cantaloupe and pineapple. Postharvest Biology and Technology, 49(3), 403–410.

    Article  CAS  Google Scholar 

  • SAS Institute (2003). JMP® 5.0.1 User’s Guide, SAS Institute, Inc., Cary NC, USA.

  • Serdyuk, I. N., Zaccai, N. R., & Zaccai, J. (2007). Methods in molecular biophysics: structure, dynamics, function. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Simões, A. D. N., Ventrella, M. C., Moretti, C. L., Carnelossi, M. A., & Puschmann, R. (2010). Anatomical and physiological evidence of white blush on baby carrot surfaces. Postharvest Biology and Technology, 55(1), 45–52.

    Article  Google Scholar 

  • Sipahi, R. E., Castell-Perez, M. E., Moreira, R. G., Gomes, C., & Castillo, A. (2012). Improved multilayered antimicrobial alginate-based edible coating extends the shelf life of fresh-cut watermelon (Citrullus lanatus). LWT—Food Science and Technology, 47(1), 1–7.

    Google Scholar 

  • Tapia, M. S., Rojas-Graü, M. A., Carmona, A., Rodriguez, F. J., Soliva-Fortuny, R., & Martin-Belloso, O. (2008). Use of alginate- and gellan-based coatings for improving barrier, texture and nutritional properties of fresh-cut papaya. Food Hydrocolloids, 22(8), 1493–1503.

    Article  CAS  Google Scholar 

  • Vázquez, E., Dewitt, D. M., Hammond, P. T., & Lynn, D. M. (2002). Construction of hydrolytically-degradable thin films via layer-by-layer deposition of degradable polyelectrolytes. Journal of the American Chemical Society, 124(47), 13992–13993.

    Article  Google Scholar 

  • Valencia-Chamorro, S. A., Palou, L., Delrío, M. A., & Pérez-Gago, M. B. (2011). Antimicrobial edible films and coatings for fresh and minimally processed fruits and vegetables. A review. Critical Reviews in Food Science and Nutrition, 51(9), 872–900.

    Article  CAS  Google Scholar 

  • Vargas, M., Chiralt, A., Albors, A., & González-Martínez, C. (2009). Effect of chitosan-based edible coatings applied by vacuum impregnation on quality preservation of fresh-cut carrot. Postharvest Biology and Technology, 51(2), 263–271.

    Article  CAS  Google Scholar 

  • Vargas, M., Pastor, C., Chiralt, A., McClements, D. J., & González-Martínez, C. (2008). Recent advances in edible coatings for fresh and minimally processed fruits. Critical Reviews in Food Science and Nutrition, 48(6), 496–511.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research leading to these results has received funding from the Chief Scientist of the Israeli Ministry of Agriculture and Rural Development, Grant No. 421-0227-12 and European Union Seventh Framework Programme (FP7/2007/2013) under grant agreement n. 289719 (Project QUAFETY). We would like also thank Tatiana Yefremov for help in texture analysis. Contribution from the Agricultural Research Organization, The Volcani Center, Bet Dagan, Israel, No 646/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena Poverenov.

Additional information

Sources of Support

1. Chief Scientist of the Israeli Ministry of Agriculture and Rural Development, Grant No. 421-0227-12.

2. European Union Seventh Framework Programme (FP7/2007/2013) under grant agreement n. 289719 (Project QUAFETY).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poverenov, E., Danino, S., Horev, B. et al. Layer-by-Layer Electrostatic Deposition of Edible Coating on Fresh Cut Melon Model: Anticipated and Unexpected Effects of Alginate–Chitosan Combination. Food Bioprocess Technol 7, 1424–1432 (2014). https://doi.org/10.1007/s11947-013-1134-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-013-1134-4

Keywords

Navigation