Skip to main content
Log in

The Use of Vacuum Impregnation for Debittering Green Olives

  • Communication
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

The aim of this research was to assess the possibility of shortening the length of the debittering process for green table olive ‘Domat’ cultivar by vacuum impregnation (VI). For this purpose, debittering was carried out with NaCl (3 %), NaOH (1.5 %) and NaOH (1.5 %) + NaCl (3 %) solutions at atmospheric conditions and under vacuum (68 kPa). The effects of these applications on some physicochemical properties (total dry matter, total ash, titratable acidity, salt, protein, oil, oleuropein, total phenolics, antioxidant activity and colour) of the processed samples were determined. Total dry matter, titratable acidity, salt, protein and oil contents of the samples changed between 24.23 and 27.90, 0.22 and 0.45, 2.27 and 2.58, 0.50 and 1.26 and 6.79 and 9.42 % (w/w), respectively. Colour parameters (lightness (L*); redness (a*); yellowness (b*)) of the processed olives were measured as between 41.72 and 51.29, 15.09 and 13.30 and 22.79 and 34.84, respectively. Hue angles of the processed samples were changed between 59.78 and 68.52. VI was a useful tool for the shortening of the period of debittering process. Use of NaOH combined with NaCl in VI process caused the debittering period to decrease to 6 h. However, reduction of the amount of total phenolic compounds was the highest (21.43 %) in this condition. Use of alkali for debittering caused more dry matter diffusion from olive to the solution. There was no statistically significant difference between the oleuropein and total ash contents of the processed samples (p < 0.01). Alkali treatment also caused more oil loss from the olives. Antioxidant activity of the samples reduced up to 59.89 %. This research was the first using VI for debittering of olives; further studies are necessary to optimise process conditions of debittering for limiting loss of natural antioxidants and other components and to ensure maximum benefits to the consumer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • AOAC. (1990). Official methods of analysis (p. 15). Arlington: Association of Official Analytical Chemists.

    Google Scholar 

  • Abriouel, H., Benomar, N., Lucas, R., & Gálvez, A. (2011). Culture-independent study of the diversity of microbial populations in brines during fermentation of naturally-fermented Aloreña green table olives. International Journal of Food Microbiology, 144, 487–496.

    Article  CAS  Google Scholar 

  • Andres A, Salvatori D, Albors A, Chiralt A & Fito P (2001) Vacuum impregnation viability of some fruits and vegetables. In: Osmotic dehydration and vacuum impregnation applications in food industries (pp. 53–59). Lancaster: Technomic Publishing Company

  • Aponte, M., Ventorino, V., Blaiotta, G., Volpe, G., Farina, V., Avellone, G., et al. (2010). Study of green Sicilian table olive fermentations through microbiological, chemical and sensory analyses. Food Microbiology, 27, 162–170.

    Article  CAS  Google Scholar 

  • Balatsouras G (1997) Table olive processing technology. In: World Olive Encyclopaedia (p. 308). Madrid: International Olive Council

  • Ben Othman, N., Roblain, D., Chammen, N., Thonart, P., & Hamdi, M. (2009). Antioxidant phenolic compounds loss during the fermentation of Chétoui olives. Food Chemistry, 116, 662–669.

    Article  CAS  Google Scholar 

  • Bianchi, G. (2003). Lipids and phenols in table olives. European Journal of Lipid Science and Technology, 105, 229–242.

    Article  CAS  Google Scholar 

  • Bianco, A., & Uccella, N. (2000). Biophenolic components of olives. Food Research International, 33, 475.

    Article  CAS  Google Scholar 

  • Biricik GF (2004) Composition of olive varieties grown at economic scale and their suitability to processing. Ph.D. thesis, Uludag University. Bursa, 157 p. (Turkish)

  • Boskou, G., Salta, F. N., Chrysostomou, S., Mylona, A., Chiou, A., & Andrikopoulos, N. K. (2006). Antioxidant capacity and phenolic profile of table olives from the Greek market. Food Chemistry, 94, 558–564.

    Article  CAS  Google Scholar 

  • Brenes, M., Rejano, L., Garcia, P., Sanchez, A. H., & Garrido, A. (1995). Biochemical changes in phenolic compounds during Spanish-style green olive processing. Journal of Agricultural and Food Chemistry, 43, 2702–2706.

    Article  CAS  Google Scholar 

  • Chammem, N., Kachouri, M., Mejri, M., Peres, C., Boudabous, A., & Hamdi, M. (2005). Combined effect of alkali pretreatment and sodium chloride addition on the olive fermentation process. Bioresource Technology, 96, 1311–1316.

    Article  CAS  Google Scholar 

  • Chiralt, A., Fito, P., Barat, J. M., Andres, A., Gonzales-Martinez, C., Escriche, I., et al. (2001). Use of vacuum impregnation in food salting process. Journal of Food Engineering, 49, 141–151.

    Article  Google Scholar 

  • Chorianopoulos, N. G., Boziaris, I. S., Stamatiou, A., & Nychas, G. J. E. (2005). Microbial association and acidity development of unheated and pasteurized green-table olives fermented using glucose or sucrose supplements at various levels. Food Microbiology, 22, 117–124.

    Article  CAS  Google Scholar 

  • De Castro, A., Rejano, L., Sanchez, A. H., & Montano, A. (1995). Fermentation of lye-treated carrots by Lactobacillus plantarum. Journal of Food Science, 60, 316–319.

    Article  Google Scholar 

  • Deumier, F., Trystram, G., Collignan, A., Guedider, L., & Bohuon, P. (2003). Pulsed vacuum brining of poultry meat: interpretation of mass transfer mechanisms. Journal of Food Engineering, 58, 85–93.

    Article  Google Scholar 

  • Dıraman, H. (2010). Characterization by chemometry of the most important domestic and foreign olive cultivars from the National Olive Collection Orchard of Turkey. Grasas y Aceites, 61(4), 341–351.

    Article  Google Scholar 

  • El-Makhzangy, A., Ramadan-Hassanien, M. F., & Sulieman, A. M. (2008). Darkening of brined olives by rapid alkaline oxidation. Journal of Food Processing and Preservation, 32, 586–599.

    Article  CAS  Google Scholar 

  • Fito, P. (1994). Modelling of vacuum osmotic dehydration of food. Journal of Food Engineering, 22(1–4), 313–328.

    Article  Google Scholar 

  • Fito, P., Chiralt, A., Betoret, N., Gras, M., Chafer, M., Martinez-Monzo, J., Andres, A., & Vidal, D. (2001). Vacuum impregnation and osmotic dehydration in matrix engineering application in functional fresh food development. Journal of Food Engineering, 49, 175–183.

    Article  Google Scholar 

  • Gallego, J. B., Arroyo López, F. N., Romero Gil, V., Rodríguez Gómez, F., García García, P., & Garrido Fernández, A. (2011). Chloride salt mixtures affect Gordal cv. green Spanish-style table olive fermentation. Food Microbiology, 28, 1316–1325.

    Article  Google Scholar 

  • Garrido Fernández, A., Fernández Díez, M. J., & Adams, R. M. (1997). Table olives. Production and processing. London: Chapman & Hall.

    Google Scholar 

  • Gong, Z., Gao, L., An, J., Zhang, M., & Mujumdar, A. S. (2010). Effects of pre drying and vacuum impregnation with nano-calcium carbonate solution on strawberries, carrots, acorn and blueberries. Drying Technology, 28, 36–41.

    Article  CAS  Google Scholar 

  • Goupy, P., Fleuriet, A., Amiot, M. J., & Macheix, J. J. (1991). Enzymatic browning, oleuropein content, and diphenol oxidase activity in olive cultivars (Olea europaea L). Journal of Agricultural and Food Chemistry, 39, 92–95.

    Article  CAS  Google Scholar 

  • IOOC (2011) International Olive Council: World table olive figures. Available at: www.internationaloliveoil.org/estaticos/view/132-worldtable-olive-figures. Accessed 18 November 2011

  • Jimenez, A., Guillen, R., Fernandez-Bolanos, J., & Heredia, A. (1997). Factors affecting the Spanish green olive process: their influence on final texture and industrial losses. Journal of Agricultural and Food Chemistry, 45, 4065–4070.

    Article  CAS  Google Scholar 

  • Kumral, A., Basoglu, F., & Sahin, I. (2009). Effect of the use of different lactic starters on the microbiological and physicochemical characteristics of naturally black table olives of Gemlik cultivar. Journal of Food Processing and Preservation, 33, 651–664.

    Article  CAS  Google Scholar 

  • Lalas, S., Athanasiadis, V., Gortzi, O., Bounitsi, M., Giovanoudis, I., Tsaknis, J., et al. (2011). Enrichment of table olives with polyphenols extracted from olive leaves. Food Chemistry, 127, 1521–1525.

    Article  CAS  Google Scholar 

  • Laurindo, J. B., Stringari, G. B., Paes, S. S., & Carciofi, B. A. (2007). Experimental determination of the dynamics of vacuum impregnation of apples. Journal of Food Science, 72(8), 470–475.

    Article  Google Scholar 

  • Maldonado, M. B., & Zuritz, C. A. (2003). A model for diffusion of sodium in green olives at different temperatures and lye concentrations. Journal of Food Process Engineering, 26, 339–356.

    Article  Google Scholar 

  • Maldonado, M. B., Zuritz, C. A., & Assof, M. V. (2008). Diffusion of glucose and sodium chloride in green olives during curing as affected by lye treatment. Journal of Food Engineering, 84, 224–230.

    Article  CAS  Google Scholar 

  • Marsilio, V., Lanza, B., & Pozzi, N. (1996). Progress in table olive debittering: degradation in vitro of oleuropein and derivatives by Lactobacillus plantarum. Journal of the American Oil Chemists' Society, 73(5), 593–597.

    Article  CAS  Google Scholar 

  • Marsilio, V., & Lanza, B. (1998). Characterisation of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. Journal of the Science of Food and Agriculture, 76, 520–524.

    Article  CAS  Google Scholar 

  • Marsilio, V., Seghetti, L., Iannucci, E., Russi, F., Lanza, B., & Felicioni, M. (2005). Use of a lactic acid bacteria starter culture during green olive (Olea europaea L cv Ascolana tenera) processing. Journal of the Science of Food and Agriculture, 85, 1084–1090.

    Article  CAS  Google Scholar 

  • Mastorakis, M., Sotiroudis, T. G., Xenakis, A., & Miniadis-Meimaroglou, S. (2004). Spectrophotometric analysis of enzymic and non-enzymic oxidation of oleuropein. Chemistry and Physics of Lipids, 130, 58.

    Google Scholar 

  • Medina, E., Gori, C., Servili, M., De Castro, A., Romero, C., & Brenes, M. (2010). Main variables affecting the lactic acid fermentation of table olives. International Journal of Food Science and Technology, 45, 1291–1296.

    Article  CAS  Google Scholar 

  • Montaño, A., Sánchez, AH., López-López, A., De Castro, A., & Rejano, L. (2010) Chemical composition of fermented green olives: acidity, salt, moisture, fat, protein, ash, fiber, sugar and polyphenol. In: Olives and olive oil in health and disease prevention (pp. 291–297). Amsterdam: Elsevier

  • Moraga, M. J., Moraga, G., Fito, P. J., & Martinez-Navarrete, N. (2009). Effect of vacuum impregnation with calcium lactate on the osmotic dehydration kinetics and quality of osmodehydrated grapefruit. Journal of Food Engineering, 90, 372–379.

    Article  Google Scholar 

  • Nergiz, C., & Ergonul, P. G. (2009). Organic acid content and composition of the olive fruits during ripening and its relationship with oil and sugar. Scientia Horticulturae, 122, 216–220.

    Article  CAS  Google Scholar 

  • Panagou, E. Z. (2004). Effect of different packing treatments on the microbiological and physicochemical characteristics of untreated green olives of the Conservolea cultivar. Journal of the Science of Food and Agriculture, 84, 757–764.

    Article  CAS  Google Scholar 

  • Romeo, F. V., De Luca, S., Piscopo, A., Perri, E., & Poiana, M. (2009). Effects of post-fermentation processing on the stabilisation of naturally fermented green table olives (cv Nocellara etnea). Food Chemistry, 116, 873–878.

    Article  CAS  Google Scholar 

  • Saurel, R. (2004) Improving the texture of processed vegetables by vacuum infusion. In: Texture in food (pp. 241–258). Cambridge: Woodhead Publishing

  • Savas, E. (2006). The effect of different treatments and debittering processes used for brined green olive production on processing period and product quality. Ph.D. thesis, Uludag University, Bursa, 92 p. (Turkish)

  • Sahan, Y., Basoglu, F., & Gucer, S. (2007). ICP-MS analysis of a series of metals (namely: Mg, Cr, Co, Ni, Fe, Cu, Zn, Sn, Cd and Pb) in black and green olive samples from Bursa, Turkey. Food Chemistry, 105, 395–399.

    Article  CAS  Google Scholar 

  • Sahin I, Korukluoglu M, Uylaser V & Gocmen D (2000) Production of diet olive and olive puree. Turkey 1st Olive Symposium, Bursa, 06–09 June 2000. pp. 179–184. (Turkish)

  • Sciancalepore, V. (1984). Temperature of lye treatment during preparation of Sevillan style olives. Industrie Alimentari, 23(222), 941–944.

    CAS  Google Scholar 

  • Tassou, C. C., Katsaboxakis, C. Z., Georget, D. M. R., Parker, M. L., Waldron, K. W., Smith, A. C., et al. (2007). Effect of calcium chloride on mechanical properties and microbiological characteristics of cv. Conservolea naturally black olives fermented at different sodium chloride levels. Journal of the Science of Food and Agriculture, 87, 1123–1131.

    Article  CAS  Google Scholar 

  • Tokusoglu, O., & Alcitepe, E. (2010) Varieties of table olives and olives for olive oil production in Turkey and other grower countries. In: Special fruit: olive, its chemistry, quality and technology (p. 29). Izmir: Sidas Medya Ltd. (Turkish).

  • Tuna, S., & Akpinar-Bayizit, A. (2009). The use of β-glucosidase enzyme in black table olives fermentation. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 37(2), 182–189.

    CAS  Google Scholar 

  • Tzika, E., Papadimitriou, V., Sotiroudis, T. G., & Xenakis, A. (2004). Chemical and enzymatic oxidation of oleuropein: an EPR study. Chemistry and Physics of Lipids, 130, 61–61.

    Google Scholar 

  • Uddin, M. B., Ainsworth, P., & Ibanoglu, S. (2004). Evaluation of mass exchange during osmotic dehydration of carrots using response surface methodology. Journal of Food Engineering, 65, 473–477.

    Article  Google Scholar 

  • Uylaser V, Korukluoglu M, Gocmen D, Yildirim A & Sahin I (2000) Effect of different variety and processing on product quality in green olives production. Turkey 1st Olive Symposium, Bursa, 06–09 June 2000. pp. 220–226. (Turkish)

  • Unal, K., & Nergiz, C. (2003). The effect of table olive preparing methods and storage on the composition and nutritive value of olives. Grasas y Aceites, 54(1), 71–76.

    Article  Google Scholar 

  • Xie, J., & Zhao, Y. (2003). Nutritional enrichment of fresh apple (Royal Gala) by vacuum impregnation. International Journal of Food Science and Nutrition, 54, 387–398.

    Article  CAS  Google Scholar 

  • Waldron, K. W., Smith, A. C., Parr, A. J., Ng, A., & Parker, M. L. (1997). New approaches to understanding and controlling cell separation in relation to fruit and vegetable texture. Trends in Food Science and Technology, 8, 213–221.

    Article  CAS  Google Scholar 

  • Zhao, Y., & Xie, J. (2004). Practical applications of vacuum impregnation in fruit and vegetable processing. Trends in Food Science and Technology, 15, 434–451.

    Article  CAS  Google Scholar 

  • Zoidou, E., Melliou, E., Gikas, E., Tsarbopoulos, A., Magiatis, P., & Skaltsounis, A. L. (2010). Identification of Throuba Thassos, a traditional Greek table olive variety, as a nutritional rich source of oleuropein. Journal of Agricultural and Food Chemistry, 58(1), 46–50.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Canan Ece Tamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tamer, C.E., İncedayı, B., Yıldız, B. et al. The Use of Vacuum Impregnation for Debittering Green Olives. Food Bioprocess Technol 6, 3604–3612 (2013). https://doi.org/10.1007/s11947-012-0971-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-012-0971-x

Keywords

Navigation