Skip to main content
Log in

Application of Response Surface Methodology to Improve Fermentation Time and Rheological Properties of Probiotic Yogurt Containing Lactobacillus reuteri

  • Original Paper
  • Published:
Food and Bioprocess Technology Aims and scope Submit manuscript

Abstract

Response surface methodology was employed to investigate the combined effects of inulin addition (0–4% w/w), probiotic inoculum level (1–3% v/v), and fermentation temperature (37–45 °C) on fermentation time and rheological properties of nonfat-set yogurt. The rheological characteristics were measured by dynamic oscillatory rheometery. The second-order polynomial model was fitted to the fermentation time (T f), structure strength (A value), resistance to mechanical force or yield stress (τ y), and complex viscosity (ŋ*) of runs as the responses. Analysis of variance revealed that the quadratic models are well adjusted to predict the experimental data. Lack-of-fit tests were not significant and determination coefficients (R 2) were higher than 88.6%. The results showed that fermentation time decreased with increasing inulin content, incubation temperature, and probiotic inoculum level. Rheological properties significantly influenced by independent variables. Inulin addition had a softening effect on yogurt. However, the effect of incubation temperature on structure strength was positive. Medium levels of probiotic inoculum resulted in stronger gels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aryana, K. J., & McGrew, P. (2007). Quality attributes of yogurt with Lactobacillus casei and various prebiotics. LWT, 40, 1808–1814.

    Article  CAS  Google Scholar 

  • Dello Staffolo, M., Bertola, N., Martino, M., & Bevilacqua, A. (2004). Influence of dietary fiber addition on sensory and rheological properties of yoghurt. International Dairy Journal, 14, 263–268.

    Article  Google Scholar 

  • Flamm, G., Glinsmann, W., Kritchevsky, D., Prosky, L., & Roberfroid, M. (2001). Inulin and oligofructose as dietary fiber: a review of the evidence. Critical Reviews in Food Science and Nutrition, 41, 353–362.

    Article  CAS  Google Scholar 

  • Guandalini, S., Pensabene, L., Zikri, M. A., Dias, J. A., Casali, L. G., Hoekstra, H., et al. (2000). Lactobacillus GG administered in oral rehydration solution to children with acute diarrhoea: a multicenter European trail. Journal of Pediatric Gastroenterology and Nutrition, 30, 460.

    Google Scholar 

  • Guggisberg, D., Cuthberth-Steven, J., Piccinali, P., Butikofer, U., & Eberhard, P. (2009). Rheological, microstructural and sensory characterization of low-fat and whole milk set yoghurt as influenced by inulin addition. International Dairy Journal, 19, 107–115.

    Article  CAS  Google Scholar 

  • Guven, M., Yasar, K., Karaca, O. B., & Hayaloglu, A. A. (2005). The effect of inulin as a fat replacer on the quality of set-type low-fat yogurt manufacture. International Journal of Dairy Technology, 58, 180–184.

    Article  CAS  Google Scholar 

  • Haque, A., Richardson, R. K., & Morris, E. R. (2001). Effect of fermentation temperature on the rheology of set and stirred yogurt. Food Hydrocolloids, 15, 593–602.

    Article  CAS  Google Scholar 

  • Hekmat, S., Soltani, H., & Reid, G. (2009). Growth and survival of Lactobacillus reuteri RC-14 and Lactobacillus rhamnosus GR-1 in yogurt for use as a functional food. Innovative Food Science & Emerging Technologies, 10, 293–296.

    Article  CAS  Google Scholar 

  • Hess, S. J., Roberts, R. F., & Ziegler, G. R. (1997). Rheological properties of non-fat yoghurt stabilised using Lactobacillus delbrueckii ssp. Bulgaricus producing exopolysaccaride or using commercial stabiliser system. Journal of Dairy Science, 80, 252–263.

    Article  CAS  Google Scholar 

  • Horn, D. S. (1998). Casein interactions: casting light on the black boxes, the structure in dairy products. International Dairy Journal, 8, 171–177.

    Article  Google Scholar 

  • Kip, P., Meyer, D., & Jellema, R. H. (2006). Inulins improve sensoric and textural properties of low-fat yoghurts. International Dairy Journal, 16, 1098–1103.

    Article  CAS  Google Scholar 

  • Koh, S. P., Tan, C. P., Lai, O. M., Arifin, N., Yusoff, M. S. A., & Long, K. (2010). Enzymatic synthesis of medium- and long-chain triacylglycerols (MLCT): optimization of proces parameters using response surface methodology. Food and Bioprocess Technology, 3, 288–299.

    Article  CAS  Google Scholar 

  • Kristo, E., Biliaderis, C. G., & Tzanetakis, N. (2003). Modelling of rheological, microbiological and acidification properties of a fermented milk product containing a probiotic strain of Lactobacillus paracasei. International Dairy Journal, 13, 517–528.

    Article  CAS  Google Scholar 

  • Lee, W. J., & Lucey, J. A. (2004). Structure and physical properties of yogurt gels: effect of inoculation rate and incubation temperature. Journal of Dairy Science, 87, 3153–3164.

    Article  CAS  Google Scholar 

  • Lucey, J. A. (2004). Cultured dairy products: an overview of their gelation and texture properties. International Journal of Dairy Technology, 57(2/3), 77–84.

    Article  CAS  Google Scholar 

  • Marteau, P. R., De Vrese, M., Cellier, C. J., & Schrezenmeir, J. (2001). Protection from gastrointestinal diseases with the use of probiotics. The American Journal of Clinical Nutrition, 73, 430S–436S.

    CAS  Google Scholar 

  • Mezger, T. (2006). The rheology handbook, for users of rotational and oscillatory rheometers. Hannover: Vincentz Publishers.

    Google Scholar 

  • Mistry, V. V., & Hassan, H. N. (1992). Manufacture of non-fat yogurt from high milk protein powder. Journal of Dairy Science, 75, 947–957.

    Article  CAS  Google Scholar 

  • Mukai, T., Asasaka, T., Sato, E., Mori, K., Matsumoto, M., & Ohori, H. (2002). Inhibition of binding of Helicobacter pylori to the glycolipid receptors by probiotic Lactobacillus reuteri. FEMS Immunology and Medical Microbiology, 32, 105–110.

    Article  CAS  Google Scholar 

  • Myers, R. H., & Montgomery, R. C. (2002). Response surface methodology: Process and product optimization using designed experiments. New York: Wiley.

    Google Scholar 

  • Passephol, T., Small, D. M., & Sherkat, F. (2008). Rheology and texture of set yogurt as affected by inulin addition. Journal of Texture Studies, 39, 617–634.

    Article  Google Scholar 

  • Reid, G., Charbonneau, D., Erb, J., Kochanowski, B., Beuerman, D., Poehner, R., et al. (2003). Oral use of L. rhamnosus GR-1 and L. fermentum RC-14 significantly alters vaginal flora: Randomized, placebo-controlled trial. FEMS Immunology Medical. Microbiology, 35, 131–134.

    CAS  Google Scholar 

  • Robinson, R. K. (1995). The potential of inulin as a functional ingredient. British Food Journal, 97, 30–32.

    Article  Google Scholar 

  • Sadek, Z. I, El-Shafei, K., & Murad, H. A. (2004). Utilization of xanthan gum and inulin as prebiotics for lactic acid bacteria. In: Proceedings of the 9th Egyptian Conference for Dairy Science and Technology, Vol 9, (pp. 269–283). Egyptian Society of Dairy Science, Cairo, Egypt.

  • Sanchez, C., Zuiga-Lopez, R., Schmitt, C., Despond, S., & Hardy, J. (2000). Microstructure of acid-induced skim milk-locust bean gum– xanthan gels. International Dairy Journal, 10, 199–212.

    Article  CAS  Google Scholar 

  • Sandoval-Castilla, O., Lobato-Calleros, C., Aguirre-Mandujano, E., & Vernon-Carter, E. J. (2004). Microstructure and texture of yogurt as influenced by fat replacers. International Dairy Journal, 14, 151–159.

    Article  CAS  Google Scholar 

  • Schellhaas, S. M., & Morris, H. A. (1985). Rheological and scanning electron microscopic examination of skim milk gels obtained by fermenting with ropy and non-ropy strains of lactic acid bacteria. Food Microsructure, 4, 279–287.

    Google Scholar 

  • Sguarezi, C., Longo, C., Ceni, G., Boni, G., Silva, M. F., Di Luccio, M., et al. (2009). Inulinase production by agro-industrial residues: optimization of pretreatment of substrates and production medium. Food and Bioprocess Technology, 2, 409–414.

    Article  CAS  Google Scholar 

  • Shin, H. S., Lee, J. H., Pestka, J. J., & Ustunol, Z. (2000). Growth and viability of commercial Bifidobacterium spp. in skim milk containing oligosaccharides and inulin. Journal of Food Science, 65, 884–887.

    Article  CAS  Google Scholar 

  • Skirver, A., Roemer, H., & Qvist, K. B. (1993). Rheological characterization of stirred yogurt: viscometery. Journal of Texture Studies, 24, 185–198.

    Article  Google Scholar 

  • Sodini, I., Remeuf, F., Haddad, S., & Corrieu, G. (2004). The relative effect of milk base, starter, and process on yogurt texture: a review. Critical Reviews in Food Science and Nutrition, 44(2), 113–137.

    Article  Google Scholar 

  • Sodini, I., Lucas, A., Tissier, J. P., & Corrieu, G. (2005). Physical properties and microstructure of yoghurts supplemented with milk protein hydrolysates. International Dairy Journal, 15, 29–35.

    Article  CAS  Google Scholar 

  • Steffe, J. (1996). Rheological methods in food process engineering. East Lansing: Freeman.

    Google Scholar 

  • Tamime, A. Y. (2006). Fermented Milks. Oxford: Blackwell.

    Book  Google Scholar 

  • Taranto, M. P., Medici, M., Perdigon, G., Ruiz Holgado, A. P., & Valdez, G. F. (1998). Evidence for hypocholesterolemic effect of Lactobacillus reuteri in hypercholesterolemic mice. Journal of Dairy Science, 81, 2336–2340.

    Article  CAS  Google Scholar 

  • Tarrega, A., & Costell, E. (2006). Effect of inulin addition on rheological and sensory properties of fat-free starch-based dairy desserts. International Dairy Journal, 16, 1104–1112.

    Article  CAS  Google Scholar 

  • Tripathi, S., & Mishra, H. N. (2009). Modeling and optimization of enzymatic degradation of aflatoxin B1 (AFB1) in red chili powder using response surface methodology. Food and Bioprocess Technology, doi:10.1007/s11947-010-0387-4

  • Tungland, B. C., & Meyer, D. (2002). Non digestible oligo-and polysaccharides (dietary fiber): their physiology and role in human health and food. Comprehensive Reviews in Food Science and Food Safety, 1, 73–92.

    Article  CAS  Google Scholar 

  • Ünal, B., Metin, S., & Isýklý, N. D. (2003). Use of response surface methodology to describe the combined effect of storage time, locust bean gum and dry matter of milk on the physical properties of low-fat set yoghurt. International Dairy Journal, 13(11), 909–916.

    Article  Google Scholar 

  • Wu, S., Li, D., Li, S., Bhandari, B., Yang, B., Chen, X. D., et al. (2009). Effects of incubation temperature, starter culture level and total solids content on the rheological properties of yogurt. International Journal of Food Engineering, 5(2), 3.

    Article  Google Scholar 

  • Yi, H., Zhang, L., Hua, C., Sun, K., & Zhang, L. (2010). Extraction and enzymatic hydrolysis of inulin from Jerusalem artichoke and their effects on textural and sensorial characteristics of yogurt. Food and Bioprocess Technology, 3, 315–319.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faramarz Khodaiyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bitaraf, M.S., Khodaiyan, F., Mohammadifar, M.A. et al. Application of Response Surface Methodology to Improve Fermentation Time and Rheological Properties of Probiotic Yogurt Containing Lactobacillus reuteri . Food Bioprocess Technol 5, 1394–1401 (2012). https://doi.org/10.1007/s11947-010-0433-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11947-010-0433-2

Keywords

Navigation