Skip to main content

Advertisement

Log in

Management of Primary Lateral Sclerosis

  • Neuromuscular Disorders (C Fournier, Section Editor)
  • Published:
Current Treatment Options in Neurology Aims and scope Submit manuscript

Abstract

Purpose of review

Primary lateral sclerosis is a progressive neurodegenerative process that primarily affects upper motor neuron and presents with progressive stiffness and spasticity in all muscle groups. Given its rarity, diagnosis can be difficult and there has been limited research into what the best treatment is. This review will work to summarize the current available knowledge on the management of primary lateral sclerosis (PLS) including medications, nonpharmacologic interventions, diet, and exercise.

Recent findings

There have been no controlled studies of therapies in PLS. Management decisions are based on expert opinion from trials of other motor neuron diseases. The disease, while not curable, is treatable. A treatment plan will involve a mixture of medications, nonpharmacologic interventions, and exercise. The plan should be specific for each individual’s disabilities and not a one size fits all plan. Multidisciplinary centers with specialists trained in PLS can help to develop a plan. Research into the best practices and new treatments can have the potential to improve function.

Summary

While there is no cure for PLS, there are treatments for PLS. Therapy should involve an individualized care plan involving a mixture of treatment options developed and maintained through a multidisciplinary service and science hub model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pringle CE, Hudson AJ, Munoz DG, Kiernan JA, Brown WF, Ebers GC. Primary lateral sclerosis. Clinical features, neuropathology and diagnostic criteria. Brain. 1992;115(Pt 2):495–520.

    PubMed  Google Scholar 

  2. Wais V, Rosenbohm A, Petri S, Kollewe K, Hermann A, Storch A, et al. The concept and diagnostic criteria of primary lateral sclerosis. Acta Neurol Scand. 2017;136(3):204–11.

    PubMed  Google Scholar 

  3. Mitsumoto H, Nagy PL, Gennings C, Murphy J, Andrews H, Goetz R, et al. Phenotypic and molecular analyses of primary lateral sclerosis. Neurol Genet. 2015;1(1):e3.

    PubMed  PubMed Central  Google Scholar 

  4. Statland JM, Barohn RJ, Dimachkie MM, Floeter MK, Mitsumoto H. Primary lateral sclerosis. Neurol Clin. 2015;33(4):749–60.

    PubMed  PubMed Central  Google Scholar 

  5. • Turner M, Barohn B, Corcia P, Fink J, Harms M, Kiernan M, et al. Delegates of the 2nd International PLS Conference. Primary lateral sclerosis: consensus diagnostic criteria. J Neurol Neurosurg Psychiatry. 2020;91(4):373–7 This reflects a consensus on the current state of knowledge on PLS with clinical features, EMG, and criteria for diagnosis.

  6. •• Okun MS, Ramirez-Zamora A, Foote KD. Neuromedicine service and science hub model. JAMA Neurol. 2018;75(3):271–2 A description of the ideal model for comprehensive care.

    PubMed  Google Scholar 

  7. Paganoni S, Deng J, Jaffa M, Cudkowicz ME, Wills AM. Body mass index, not dyslipidemia, is an independent predictor of survival in amyotrophic lateral sclerosis. Muscle Nerve. 2011;44:20–4.

    PubMed  PubMed Central  Google Scholar 

  8. Fitzgerald KC, O’Reilly ÉJ, Fondell E, Falcone GJ, McCullough ML, Park Y, et al. Intakes of vitamin C and carotenoids and risk of amyotrophic lateral sclerosis: pooled results from 5 cohort studies. Ann Neurol. 2013;73(2):236–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Andrews JA, Paganoni S, Braastad C, Cudkowicz M, Atassi N. Disease burden in upper motor neuron syndromes: a survey of patient perspectives. J Clin Neuromuscul Dis. 2014;16(2):104–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Keenan E. Spasticity management, part 2: choosing the right medication to suit the individual. Br J Neurosci Nurs. 2009;5:419–24.

    Google Scholar 

  11. Simon O, Yelnik AP. Managing spasticity with drugs. Eur J Phys Rehabil Med. 2010;46:401–10.

    CAS  PubMed  Google Scholar 

  12. Brashear A, Lambeth K. Spasticity. Curr Treat Options Neurol. 2009;11:153–61.

    PubMed  Google Scholar 

  13. Rabchevsky AG, Kitzman PH. Latest approaches for the treatment of spasticity and autonomic dysreflexia in chronic spinal cord injury. Neurotherapeutics. 2011;8:274–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bedlack RS, et al. Pastula DM, Hawes J, Heydt D. Open-label pilot trial of levetiracetam for cramps and spasticity in patients with motor neuron disease. Amyotroph Lateral Scler. 2009;10(4):210–5.

    PubMed  Google Scholar 

  15. Marvulli R, Megna M, Citraro A, Vacca E, Napolitano M, Gallo G, et al. Botulinum toxin type A and physiotherapy in spasticity of the lower limbs due to amyotrophic lateral sclerosis. Toxins (Basel). 2019;11(7).

  16. • Jackson CE, McVey AL, Rudnicki S, Dimachkie MM, Barohn RJ. Symptom management and end-of-life care in amyotrophic lateral sclerosis. Neurol Clin. 2015;33(4):889–908 While focused on ALS, this presents a summary of treatment options in 2015.

    PubMed  PubMed Central  Google Scholar 

  17. Fralick M, Sacks CA, Kesselheim AS. Assessment of use of combined dextromethorphan and quinidine in patients with dementia or Parkinson disease after US Food and Drug Administration approval for pseudobulbar affect. JAMA Intern Med. 2019;179(2):224–30.

    PubMed  Google Scholar 

  18. Odachi K, Narita Y, Machino Y, et al. Efficacy of transdermal scopolamine for sialorrhea in patients with amyotrophic lateral sclerosis. Cogent Med. 2017;4:1365401.

    Google Scholar 

  19. Garuti G, Rao F, Ribuffo V, Sansone VA. Sialorrhea in patients with ALS: current treatment options. Degener Neurol Neuromuscul Dis. 2019;9:19–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen SY, Ravindran G, Zhang Q, Kisely S, Siskind D. Treatment strategies for clozapine-induced sialorrhea: a systematic review and meta-analysis. CNS Drugs. 2019;33(3):225–38.

    PubMed  Google Scholar 

  21. Banfi P, Ticozzi N, Lax A, Guidugli GA, Nicolini A, Silani VA. Review of options for treating sialorrhea in amyotrophic lateral sclerosis. Respir Care. 2015;60(3):446–54.

    PubMed  Google Scholar 

  22. Forshew D, Bromber MA. survey of clinicians’ practice in the symptomatic treatment of ALS. Amyotroph Lateral Scler Other Motor Neuron Disord. 2003;4:258–63.

    PubMed  Google Scholar 

  23. Pellegrini A, Lunetta C, Ferrarese C, et al. Sialorrhoea: how to manage a frequent complication of motor neuron disease. EMJ Neurol. 2015;3:107.

    CAS  Google Scholar 

  24. Stokholm MG, Bisgård C, Vilholm OJ. Safety and administration of treatment with botulinum neurotoxin for sialorrhoea in ALS patients: review of the literature and a proposal for tailored treatment. Amyotroph Lat Scl Fr. 2013;14:516–20.

    CAS  Google Scholar 

  25. Guidubaldi A, Fasano A, Ialongo T, Piano C, Pompili M, Mascianà R, et al. Botulinum toxin A versus B in sialorrhea: a prospective, randomized, double-blind, crossover pilot study in patients with amyotrophic lateral sclerosis or Parkinson’s disease. Mov Disord. 2011;26(2):313–9. https://doi.org/10.1002/mds.23473.

    Article  PubMed  Google Scholar 

  26. Jost WH, Friedman A, Michel O, et al. SIAXI: placebo-controlled, randomized, double-blind study of incobotulinumtoxin A for sialorrhea. Neurology. 2019;92(17):e1982–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Jackson CE, Gronseth G, Rosenfeld J, et al. Randomized double-blind study of botulinum toxin type B for sialorrhea in ALS patients. Muscle Nerve. 2009;39:137–43.

    CAS  PubMed  Google Scholar 

  28. Jackson CE, Gronseth G, Rosenfeld J, et al. Muscle Study Group. Randomized double-blind study of botulinum toxin type B for sialorrhea in ALS patients. Muscle Nerve. 2009;39(2):137–43.

    CAS  PubMed  Google Scholar 

  29. Assoulinr A, Levy A, Abelnour-Bedlnour-Mallet M, et al. Radiation therapy for hypersalivation: a prospective study in 50 amyotrophic lateral sclerosis patients. Int J Radiat Oncol Biol Phys. 2014;88:589–95.

    Google Scholar 

  30. Hawkey NM, Zaorsky NG, Galloway TJ. The role of radiation therapy in the management of sialorrhea: a systematic review. Laryngoscope. 2016;126(1):80–5. https://doi.org/10.1002/lary.25444.

    Article  PubMed  Google Scholar 

  31. Marquardt G, Seifert V. Use of intrathecal baclofen for treatment of spasticity in amyotrophic lateral sclerosis. J Neurol Neurosurg Psychiatry. 2002;72(2):275–6. https://doi.org/10.1136/jnnp.72.2.275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zubair A, Raymond M, Patwa H. Utility of intrathecal baclofen pump in primary lateral sclerosis. Neurology. 2018;90(15 Supplement):P3.429.

    Google Scholar 

  33. Schmidtko A, Lötsch J, Freynhagen R, Geisslinger G. Ziconotide for treatment of severe chronic pain. Lancet. 2010;375:1569–77.

    CAS  PubMed  Google Scholar 

  34. Zhu X, Kohan LR, Goldstein RB. Low-dose intrathecal ziconotide for spasticity from primary lateral sclerosis: a case report. A A Pract. 2019;13(1):31–3.

    PubMed  Google Scholar 

  35. • Paganoni S, Karam C, Joyce N, Bedlack R, Carter G. Comprehensive rehabilitative care across the spectrum of amyotrophic lateral sclerosis. NeuroRehabilitation. 2015;37(1):53–68 While focused on ALS, this describes the importance of comprehensive rehabilitation.

    PubMed  PubMed Central  Google Scholar 

  36. Miller RG, Jackson CE, Kasarskis EJ, England JD, Forshew D, Johnston W, et al. Quality Standards Subcommittee of the American Academy of Neurology. Practice parameter update: the care of the patient with amyotrophic lateral sclerosis: multidisciplinary care, symptom management, and cognitive/behavioral impairment (an evidence-based review): report of the Quality Standards Subcommittee of the American Academy of Neurology. Neurology. 2009;73(15):1227–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Dal Bello-Haas V, Florence J. Therapeutic exercise for people with amyotrophic lateral sclerosis or motor neuron disease. Cochrane Database Syst Rev. 2013May;2013(5):CD005229.

  38. Tsitkanou S, Della Gatta P, Foletta V, Russell A. The role of exercise as a non-pharmacological therapeutic approach for amyotrophic lateral sclerosis: beneficial or detrimental? Front Neurol. 2019;10:783.

    PubMed  PubMed Central  Google Scholar 

  39. Gordon T, English AW. Strategies to promote peripheral nerve regeneration: electrical stimulation and/or exercise. Eur J Neurosci. 2016;43(3):336–50.

    PubMed  Google Scholar 

  40. Arbesman M, Sheard K. Systematic review of the effectiveness of occupational therapy–related interventions for people with amyotrophic lateral sclerosis. Amer J Occ Ther. 2014;68:20–6.

    Google Scholar 

  41. Maresca G, Pranio F, Naro A, De Luca R, Maggio MG, Scarcella I, et al. Augmentative and alternative communication improves quality of life in the early stages of amyotrophic lateral sclerosis. Funct Neurol. 2019;34(1):35–43.

    CAS  PubMed  Google Scholar 

  42. McNaughton D, Giambalvo F, Kohler K, Nazareth G, Caron J, Fager S. “Augmentative and alternative communication (AAC) will give you a voice”: key practices in AAC assessment and intervention as described by persons with amyotrophic lateral sclerosis. Semin Speech Lang. 2018Nov;39(5):399–415.

  43. Tartaglia MC, Rowe A, Findlater K, Orange JB, Grace G, Strong MJ. Differentiation between primary lateral sclerosis and amyotrophic lateral sclerosis: examination of symptoms and signs at disease onset and during follow-up. Arch Neurol. 2007;64(2):232–6.

    PubMed  Google Scholar 

  44. Tabor, Gaziano L, Watts J, Robison SR, Plowman EK. Defining swallowing-related quality of life profiles in individuals with amyotrophic lateral sclerosis. Dysphagia. 2016;31(3):376–82.

    PubMed  PubMed Central  Google Scholar 

  45. Plowman EK, Tabor-Gray L, Rosado KM, Vasilopoulos T, Robison R, Chapin JL, et al. Impact of expiratory strength training in amyotrophic lateral sclerosis: Results of a randomized, sham-controlled trial. Muscle Nerve. 2019;59(1):40–6.

    PubMed  Google Scholar 

  46. Giacoppo S, Mazzon E. Can cannabinoids be a potential therapeutic tool in amyotrophic lateral sclerosis? Neural Regen Res. 2016;11(12):1896–9. https://doi.org/10.4103/1673-5374.197125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Riva N, Mora G, Sorarù G, Lunetta C, Ferraro OE, Falzone Y, et al. CANALS Study Group. Safety and efficacy of nabiximols on spasticity symptoms in patients with motor neuron disease (CANALS): a multicenter, double-blind, randomized, placebo-controlled, phase 2 trial. Lancet Neurol. 2019;18(2):155–64.

    CAS  PubMed  Google Scholar 

  48. Meyer T, Funke A, Münch C, et al. Real world experience of patients with amyotrophic lateral sclerosis (ALS) in the treatment of spasticity using tetrahydrocannabinol: cannabidiol (THC:CBD). BMC Neurol. 2019;19(1):222.Published 2019 Sep 7. https://doi.org/10.1186/s12883-019-1443-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kwan JY, Jeong SY, Van Gelderen P, Deng HX, Quezado MM, Danielian LE, et al. Iron accumulation in deep cortical layers accounts for MRI signal abnormalities in ALS: correlating 7 tesla MRI and pathology. PLoS One. 2012;7(4):e35241.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Kwan JY, Meoded A, Danielian LE, Wu T, Floeter MK. Structural imaging differences and longitudinal changes in primary lateral sclerosis and amyotrophic lateral sclerosis. Neuroimage Clin. 2012;2:151–60.

    PubMed  PubMed Central  Google Scholar 

  51. Oba H, Araki T, Ohtomo K, Monzawa S, Uchiyama G, Koizumi K, et al. Amyotrophic lateral sclerosis: T2 shortening in motor cortex at MR imaging. Radiology. 1993;189(3):843–6.

    CAS  PubMed  Google Scholar 

  52. Eisen A, Shytbel W, Murphy K, Hoirch M. Cortical magnetic stimulation in amyotrophic lateral sclerosis. Muscle Nerve. 1990;13(2):146–51.

    CAS  PubMed  Google Scholar 

  53. Huynh W, Dharmadasa T, Vucic S, Kiernan MC. Functional biomarkers for amyotrophic lateral sclerosis. Front Neurol. 2018;9:1141.

    PubMed  Google Scholar 

  54. Geevasinga N, Menon P, Sue CM, Kumar KR, Ng K, Yiannikas C, et al. Cortical excitability changes distinguish the motor neuron disease phenotypes from hereditary spastic paraplegia. Eur J Neurol. 2015;22(5):826–31e57–8.

    CAS  PubMed  Google Scholar 

  55. Magistris MR, Rosler KM. The triple stimulation technique to study corticospinal conduction. Suppl Clin Neurophysiol. 2003;56:24–32.

    CAS  PubMed  Google Scholar 

  56. Magistris MR, Rosler KM, Truffert A, Landis T, Hess CW. A clinical study of motor evoked potentials using a triple stimulation technique. Brain. 1999;122(Pt2):265–79.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Wymer MD, PhD.

Ethics declarations

Conflict of Interest

JPW and DJL report support from Acorda pharmaceuticals with study medication only for a trial of dalfampridine in primary lateral sclerosis. No other potential conflicts of interest relevant to this article are reported.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuromuscular Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, C., Lange, D.J. & Wymer, J.P. Management of Primary Lateral Sclerosis. Curr Treat Options Neurol 22, 31 (2020). https://doi.org/10.1007/s11940-020-00640-6

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11940-020-00640-6

Keywords

Navigation