Skip to main content

Advertisement

Log in

Cardiac Rehabilitation: Underrecognized/Underutilized

  • Prevention (L Sperling and D Gaita, Section Editors)
  • Published:
Current Treatment Options in Cardiovascular Medicine Aims and scope Submit manuscript

Opinion statement

Unfortunately, too many patients continue to rely on costly coronary revascularization procedures, cardioprotective medications, or both, as first-line strategies to stabilize the course of coronary heart disease. However, these palliative therapies do not address the foundational or most proximal risk factors for coronary disease, that is, unhealthy dietary habits, physical inactivity, and cigarette smoking. Because most acute myocardial infarctions evolve from mild-to-moderate coronary artery stenosis (<70 % obstruction), rather than at the more severe obstructions that are commonly treated with coronary revascularization, these findings help explain the inability to demonstrate a reduction in acute cardiac events in most studies examining coronary artery bypass graft surgery and/or percutaneous coronary interventions. The delivery of comprehensive cardiovascular risk reduction, including exercise-based cardiac rehabilitation as an integral component, offers patients a bona fide treatment intervention to prevent recurrent cardiovascular events and the need for repeated revascularization procedures, while simultaneously providing referring physicians with ongoing surveillance data to potentially enhance their medical management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References and Recommended Reading

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Roger VL, Go AS. Executive summary: heart disease and stroke statistics–2012 update: a report from the American Heart Association. Circulation. 2012;125(1):188–97.

    Article  PubMed  Google Scholar 

  2. Tuzcu EM, Kapadia SR, Tutar E, et al. High prevalence of coronary atherosclerosis in asymptomatic teenagers and young adults: Evidence from intravascular ultrasound. Circulation. 2001;103(22):2705–10.

    Article  CAS  PubMed  Google Scholar 

  3. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation. 1995;92(3):657–71.

    Article  CAS  PubMed  Google Scholar 

  4. Libby P. Atherosclerosis: the new view. Sci Am. 2002;286(5):46–55.

    Article  PubMed  Google Scholar 

  5. Franklin BA. Coronary revascularization and medical management of coronary artery disease: changing paradigms and perceptions. Eur J Cardiovasc Prev Rehabil. 2006;13(5):669–73.

    Article  PubMed  Google Scholar 

  6. Mozaffarian D, Wilson PW, Kannel WB. Beyond established and novel risk factors: lifestyle risk factors for cardiovascular disease. Circulation. 2008;117(23):3031–8.

    Article  PubMed  Google Scholar 

  7. Teo K, Lear S, Islam S, et al. Prevalence of a healthy lifestyle among individuals with cardiovascular disease in high-, middle- and low-income countries: the Prospective Urban Rural Epidemiology (PURE) study. JAMA. 2013;309(15):1613–21. A sobering study demonstrating that most patients with cardiovascular disease generally fail to adopt healthly lifestyle behaviors, including healthy dietary practices, regular physical activity, and the cessation of cigarette smoking.

    Article  CAS  PubMed  Google Scholar 

  8. Khattab AA, Knecht M, Meier B, et al. Persistence of uncontrolled cardiovascular risk factors in patients treated with percutaneous interventions for stable coronary artery disease not receiving cardiac rehabilitation. Eur J Prev Cardiol. 2013;20(5):743–9.

    Article  PubMed  Google Scholar 

  9. Arnold SV, Spertus JA, Masoudi FA, et al. Beyond medication prescription as performance measures: optimal secondary prevention medication dosing after acute myocardial infarction. J Am Coll Cardiol. 2013;62(19):1791–801.

    Article  PubMed  Google Scholar 

  10. Newby LK, LaPointe NM, Chen AY, et al. Long-term adherence to evidence-based secondary prevention therapies in coronary artery disease. Circulation. 2006;113(2):203–12.

    Article  CAS  PubMed  Google Scholar 

  11. Ho PM, Magid DJ, Shetterly SM, et al. Medication nonadherence is associated with a broad range of adverse outcomes in patients with coronary artery disease. Am Heart J. 2008;155(4):772–9.

    Article  PubMed  Google Scholar 

  12. Sandesara PB, Lambert CT, Gordon NF, et al. Cardiac rehabilitation and risk reduction: time to “rebrand and reinvigorate”. J Am Coll Cardiol. 2015;65(4):389–95. An extremely timely review/commentary highlighting the benefits of contemporary exercise-based cardiac rehabilitation, current programmatic deficiencies and limitations, and future directions to enhance the utilization of this bonafide treatment option.

    Article  PubMed  Google Scholar 

  13. Smith Jr SC, Benjamin EJ, Bonow RO, et al. AHA/ACCF secondary prevention and risk reduction therapy for patients with coronary and other atherosclerotic vascular disease: 2011 update: a guideline from the American Heart Association and American College of Cardiology Foundation. Circulation. 2011;124(22):2458–73.

    Article  PubMed  Google Scholar 

  14. O’Gara PT, Kushner FG, Ascheim DD, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):529–55.

    Article  PubMed  Google Scholar 

  15. Go AS, Mozaffarian D, Roger VL, et al. American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Executive summary: heart disease and stroke statistics―2014 update: a report from the American Heart Association. Circulation. 2014;129(3):399–410.

    Article  PubMed  Google Scholar 

  16. Heidenreich PA, Trogdon JG, Khavjou OA, et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123(8):933–44.

    Article  PubMed  Google Scholar 

  17. Wenger NK, Froelicher ES, Smith LK, et al. Cardiac rehabilitation. Clinical practice guideline No. 17, Rockville, MD: U.S. Dept. of Health and Human Services, Public Health Service, Agency for Health Care Policy and Research, National Heart, Lung and Blood Institute. AHCPR Publication 96-0672;1995.

  18. Balady GJ, Williams MA, Ades PA, et al. Core components of cardiac rehabilitation/ secondary prevention programs: 2007 update: a scientific statement from the American Heart Association Exercise, Cardiac Rehabilitation, and Prevention Committee, the Council on Clinical Cardiology; the Councils on Cardiovascular Nursing, Epidemiology and Prevention, and Nutrition, Physical Activity, and Metabolism; and the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2007;115(20):2675–82.

    Article  PubMed  Google Scholar 

  19. Leon AS, Franklin BA, Costa F, et al. Cardiac rehabilitation and secondary prevention of coronary heart disease: an American Heart Association scientific statement from the Council on Clinical Cardiology(Subcommittee on Exercise, Cardiac Rehabilitation, and Prevention) and the Council on Nutrition, Physical Activity, and Metabolism (Subcommittee on Physical Activity), in collaboration with the American Association of Cardiovascular and Pulmonary Rehabilitation. Circulation. 2005;111(3):369–76.

    Article  PubMed  Google Scholar 

  20. Ades PA, Waldmann ML, Polk DM, Coflesky JT. Referral patterns and exercise response in the rehabilitation of female coronary patients aged greater than or equal to 62 years. Am J Cardiol. 1992;69(17):1422–5.

    Article  CAS  PubMed  Google Scholar 

  21. Franklin BA, Fowler A, Mehta L, Chinnaiyan K. Cardiac rehabilitation for women. In: Wenger NK, Collins P, editors. Women and Heart Disease. 2nd ed. London: Taylor & Francis Books Ltd.; 2005. p. 281–99.

    Google Scholar 

  22. Ades PA, Waldmann ML, McCann WJ, Weaver SO. Predictors of cardiac rehabilitation participation in older coronary patients. Arch Intern Med. 1992;152(5):1033–5.

    Article  CAS  PubMed  Google Scholar 

  23. Menezes AR, Lavie CJ, Forman DE, et al. Cardiac rehabilitation in the elderly. Prog Cardiovasc Dis. 2014;57(2):152–9.

    Article  PubMed  Google Scholar 

  24. Valencia HE, Savage PD, Ades PA. Cardiac rehabilitation participation in underserved populations. Minorities, low socioeconomic, and rural residents. J Cardiopulm Rehabil Prev. 2011;31(4):203–10.

    Article  PubMed  Google Scholar 

  25. Balady GJ, Ades PA, Bittner VA, et al. Referral, enrollment, and delivery of cardiac rehabilitation/secondary prevention programs at clinical centers and beyond: a presidential advisory from the American Heart Association. Circulation. 2011;124(25):2951–60.

    Article  PubMed  Google Scholar 

  26. Taylor RS, Brown A, Ebrahim S, et al. Exercise-based rehabilitation for patients with coronary heart disease: systemic review and meta-analysis of randomized controlled trials. Am J Med. 2004;116(10):682–92.

    Article  PubMed  Google Scholar 

  27. Hennekens CH, Demets D. The need for large-scale randomized evidence without undue emphasis on small trials, meta-analyses, or subgroup analyses. JAMA. 2009;302(21):2361–2.

    Article  CAS  PubMed  Google Scholar 

  28. Suaya JA, Stason WB, Ades PA, Normand SL, Shepard DS. Cardiac rehabilitation and survival in older coronary patients. J Am Coll Cardiol. 2009;54(1):25–33.

    Article  PubMed  Google Scholar 

  29. O’Connor CM, Whellan DJ, Lee KL, et al. Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. JAMA. 2009;301(14):1439–50.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lawler PR, Filion KB, Eisenberg MJ. Efficacy of exercise-based cardiac rehabilitation post-myocardial infarction: a systematic review and meta-analysis of randomized controlled trials. Am Heart J. 2011;162(4):571–584. e2.

    Article  PubMed  Google Scholar 

  31. The Coronary Drug Project Research Group. Influence of adherence to treatment and response of cholesterol on mortality in the Coronary Drug Project. N Engl J Med. 1980;303(18):1038–41.

    Article  Google Scholar 

  32. Horwitz RI, Viscoli CM, Berkman L, et al. Treatment adherence and risk of death after a myocardial infarction. Lancet. 1990;336(8714):542–5.

    Article  CAS  PubMed  Google Scholar 

  33. Horwitz RI, Horwitz SM. Adherence to treatment and health outcomes. Arch Intern Med. 1993;153(16):1863–8.

    Article  CAS  PubMed  Google Scholar 

  34. Blair SN, Kohl III HW, Paffenbarger Jr RS, et al. Physical fitness and all-cause mortality. A prospective study of healthy men and women. JAMA. 1989;262(17):2395–401.

    Article  CAS  PubMed  Google Scholar 

  35. Vanhees L, Fagard R, Thijs L, et al. Prognostic significance of peak exercise capacity in patients with coronary artery disease. J Am Coll Cardiol. 1994;23(2):358–63.

    Article  CAS  PubMed  Google Scholar 

  36. Myers J, Prakash M, Froelicher V, et al. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346(11):793–801.

    Article  PubMed  Google Scholar 

  37. Kavanagh T, Mertens DJ, Hamm LF, et al. Prediction of long-term prognosis in 12 169 men referred for cardiac rehabilitation. Circulation. 2002;106(6):666–71.

    Article  PubMed  Google Scholar 

  38. Kavanagh T, Mertens DJ, Hamm LF, et al. Peak oxygen intake and cardiac mortality in women referred for cardiac rehabilitation. J Am Coll Cardiol. 2003;42(12):2139–43.

    Article  PubMed  Google Scholar 

  39. Myers J, Herbert W, Ribisl P, Franklin B. Is new science driving practice improvements and better patient outcomes? Applications for cardiac rehabilitation. Clin Invest Med. 2008;31(6):E400–7.

    PubMed  Google Scholar 

  40. Boden WE, Franklin BA, Wenger NK. Physical activity and structured exercise for patients with stable ischemic heart disease. JAMA. 2013;309(2):143–4. A widely cited viewpoint highlighting the underemphasis and clinical importance of regular physical activity, structured exercise, or both, for patients with stable ischemic heart disease.

    Article  CAS  PubMed  Google Scholar 

  41. Dutcher JR, Kahn J, Grines C, Franklin B. Comparison of left ventricular ejection fraction and exercise capacity as predictors of two- and five-year mortality following acute myocardial infarction. Am J Cardiol. 2007;99(4):436–41.

    Article  PubMed  Google Scholar 

  42. Martin BJ, Arena R, Haykowsky M, et al. Cardiovascular fitness and mortality after contemporary cardiac rehabilitation. Mayo Clin Proc. 2013;88(5):455–63. A seminal report demonstrating that coronary patients who appear to derive the greatest mortality benefit from exercise-based cardiac rehabilitation are those in the least fit, least active cohort (bottom 20 %).

    Article  PubMed  Google Scholar 

  43. Franklin BA, Lavie CJ, Squires RW, Milani RV. Exercise-based cardiac rehabilitation and improvements in cardiorespiratory fitness: implications regarding patient benefit. Mayo Clin Proc. 2013;88(5):431–7.

    Article  PubMed  Google Scholar 

  44. Pitsavos C, Kavouras SA, Panagiotakos DB. et al; GREECS Study Investigators. Physical activity status and acute coronary syndromes survival: the GREECS (Greek Study of Acute Coronary Syndromes) Study. J Am Coll Cardiol. 2008;51(21):2034–9.

    Article  PubMed  Google Scholar 

  45. Franklin BA, Brinks J, Sacks R, et al. Reduced walking speed and distance as harbingers of the approaching Grim Reaper. Am J Cardiol. 2015;116(2):313–7.

    Article  PubMed  Google Scholar 

  46. Kavanagh T, Hamm LF, Beyene J, et al. Usefulness of improvement in walking distance versus peak oxygen uptake in predicting prognosis after myocardial infarction and/or coronary artery bypass grafting in men. Am J Cardiol. 2008;101(10):1423–7.

    Article  PubMed  Google Scholar 

  47. Beatty AL, Schiller NB, Whooley MA. Six-minute walk test as a prognostic tool in stable coronary heart disease: data from the Heart and Soul Study. Arch Intern Med. 2012;172(14):1096–102.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Lo AX, Donnelly JP, McGwin Jr G, et al. Impact of gait speed and instrumental activities of daily living on all-cause mortality in adults ≥65 years with heart failure. Am J Cardiol. 2015;115(6):797–801.

    Article  PubMed  Google Scholar 

  49. Williams P, Thompson P. Increased cardiovascular disease mortality from excessive exercise in heart attack survivors. Mayo Clin Proc. 2014;89(9):1187–94.

    Article  PubMed  Google Scholar 

  50. Mons U, Hahmann H, Brenner H. A reverse J-shaped association of leisure time physical activity with prognosis in patients with stable coronary heart disease: evidence from a large cohort with repeated measurements. Heart. 2014;100(13):1043–9. A provocative report, now substantiated by other trials, that extreme exercise regimens for coronary patients are associated with a plateau or even a decline in benefit, with heightened mortality risks (e.g., reverse J-shaped curve).

    Article  PubMed  Google Scholar 

  51. O’Keefe JH, Franklin B, Lavie CJ. Exercising for health and longevity vs peak performance: different regimens for different goals. Mayo Clin Proc. 2014;89(9):1171–5.

    Article  PubMed  Google Scholar 

  52. Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N Engl J Med. 1997;336(16):1117–24.

    Article  CAS  PubMed  Google Scholar 

  53. The Treatment of Mild Hypertension Research Group. The Treatment of Mild Hypertension Study: a randomized, placebo-controlled trial of a nutritional-hygienic regimen along with various drug monotherapies. Arch Intern Med. 1991;151(7):1413–23.

    Article  Google Scholar 

  54. Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90. A compelling report highlighting the added cardioprotective benefits of a Mediterranean diet (~30 % reduction in major cardiovascular events) in persons at risk for cardiovascular disease, as compared with a low fat control diet.

    Article  CAS  PubMed  Google Scholar 

  55. Knowler WC, Barrett-Conner E, Fowler SE, et al. for the Diabetes Prevention Program Research Group. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346(6):393–403.

    Article  CAS  PubMed  Google Scholar 

  56. Barnard RJ, DiLauro SC, Inkeles SB. Effects of intensive diet and exercise intervention in patients taking cholesterol-lowering drugs. Am J Cardiol. 1997;79(8):1112–4.

    Article  CAS  PubMed  Google Scholar 

  57. Søndergaard E, Møller JE, Egstrup K. Effect of dietary intervention and lipid-lowering treatment on brachial vasoreactivity in patients with ischemic heart disease and hypercholesterolemia. Am Heart J. 2003;145(5):E19.

    Article  PubMed  Google Scholar 

  58. Conlin PR, Erlinger TP, Bohannon A, et al. The DASH diet enhances blood pressure response to losartan in hypertensive patients. Am J Hypertens. 2003;16(5 Pt 1):337–42.

    Article  CAS  PubMed  Google Scholar 

  59. Chan DC, Watts GF, Mori TA, et al. Factorial study of the effects of atorvastatin and fish oil on dyslipidaemia in visceral obesity. Eur J Clin Investig. 2002;32(6):429–36.

    Article  CAS  Google Scholar 

  60. Pitsavos C, Panagiotakos DB, Chrysohoou C, et al. The effect of Mediterranean diet on the risk of the development of acute coronary syndromes in hypercholesterolemic people: a case-control study (CARDIO2000). Coron Artery Dis. 2002;13(5):295–300.

    Article  PubMed  Google Scholar 

  61. Sdringola S, Nakagawa K, Nakagawa Y, et al. Combined intense lifestyle and pharmacologic lipid treatment further reduce coronary events and myocardial perfusion abnormalities compared with usual-care cholesterol-lowering drugs in coronary artery disease. J Am Coll Cardiol. 2003;41(2):263–72.

    Article  CAS  PubMed  Google Scholar 

  62. Wilson K, Gibson N, Willan A, Cook D. Effect of smoking cessation on mortality after myocardial infarction: meta-analysis of cohort studies. Arch Intern Med. 2000;160(7):939–44.

    Article  CAS  PubMed  Google Scholar 

  63. Shah AM, Pfeffer MA, Hartley LH, et al. Risk of all-cause mortality, recurrent myocardial infarction, and heart failure hospitalization associated with smoking status following myocardial infarction with left ventricular dysfunction. Am J Cardiol. 2010;106(7):911–6.

    Article  PubMed  Google Scholar 

  64. Thomson CC, Rigotti NA. Hospital- and clinic-based smoking cessation interventions for smokers with cardiovascular disease. Prog Cardiovasc Dis. 2003;45(6):459–79.

    Article  PubMed  Google Scholar 

  65. Kokkinos PF, Faselis C, Myers J, et al. Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet. 2013;381(9864):394–9.

    Article  CAS  PubMed  Google Scholar 

  66. Franklin BA, Brook R, Pope III CA. Air pollution and cardiovascular disease. Curr Probl Cardiol. 2015;40(5):207–38.

    Article  PubMed  Google Scholar 

  67. Stone NJ, Robinson JG, Lichtenstein AH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(25 Suppl 2):S1–45.

    Article  PubMed  Google Scholar 

  68. Jacobs EJ, Newton CC, Wang Y, et al. Waist circumference and all-cause mortality in a large US cohort. Arch Intern Med. 2010;170(15):1293–301.

    Article  PubMed  Google Scholar 

  69. Uretsky S, Messerli FH, Bangalore S, et al. Obesity paradox in patients with hypertension and coronary artery disease. Am J Med. 2007;120(10):863–70.

    Article  PubMed  Google Scholar 

  70. Bucholz EM, Rathore SS, Reid KJ, et al. Body mass index and mortality in acute myocardial infarction patients. Am J Med. 2012;125(8):796–803.

    Article  PubMed Central  PubMed  Google Scholar 

  71. Lavie CJ, De Schutter A, Milani RV. Healthy obese versus unhealthy lean: the obesity paradox. Nat Rev Endocrinol. 2015;11(1):55–62. A comprehensive review of recent studies supporting the “obesity paradox” in patients with cardiovascular disease.

    Article  PubMed  Google Scholar 

  72. Flegal KM, Kit BK, Orpana H, Graubard BI. Association of all-cause mortality with overweight and obesity using standard body mass index categories: a systematic review and meta-analysis. JAMA. 2013;309(1):71–82.

    Article  CAS  PubMed  Google Scholar 

  73. Hayward RA, Reaven PD, Wiitala WL, et al. For the VADT Investigators. Follow-up of glycemic control and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2015;372(23):2197–206.

    Article  CAS  PubMed  Google Scholar 

  74. Mukherjee D, Fang J, Chetcuti S, et al. Impact of combination evidence-based medical therapy on mortality in patients with acute coronary syndromes. Circulation. 2004;109(6):745–9.

    Article  PubMed  Google Scholar 

  75. Cucherat M. Quantitative relationship between resting heart rate reduction and magnitude of clinical benefits in post-myocardial infarction: a meta-regression of randomized clinical trials. Eur Heart J. 2007;28(24):3012–9.

    Article  PubMed  Google Scholar 

  76. Smeeth L, Thomas SL, Hall AJ, et al. Risk of myocardial infarction and stroke after acute infection or vaccination. N Engl J Med. 2004;351(25):2611–8.

    Article  CAS  PubMed  Google Scholar 

  77. Ciszewski A, Bilinska ZT, Brydak LB, et al. Influenza vaccination in secondary prevention from coronary ischaemic events in coronary artery disease: FLUCAD study. Eur Heart J. 2008;29(11):1350–8.

    Article  PubMed  Google Scholar 

  78. Schulz R, Beach SR, Ives DG, et al. Association between depression and mortality in older adults: the Cardiovascular Health Study. Arch Intern Med. 2000;160(12):1761–8.

    Article  CAS  PubMed  Google Scholar 

  79. Ziegelstein RC, Fauerbach JA, Stevens SS, et al. Patients with depression are less likely to follow recommendations to reduce cardiac risk during recovery from a myocardial infarction. Arch Intern Med. 2000;160(12):1818–23.

    Article  CAS  PubMed  Google Scholar 

  80. Lichtman JA, Froelicher ES, Blumenthal JA, et al. American Heart Association Statistics Committee of the Council on Epidemiology and Prevention and the Council on Cardiovascular and Stroke Nursing. Depression as a risk factor for poor prognosis among patients with acute coronary syndrome: systematic review and recommendations: a scientific statement from the American Heart Association. Circulation. 2014;129(12):1350–69.

    Article  PubMed  Google Scholar 

  81. Hillis LD, Smith PK, Anderson JL, et al. 2011 ACCF/AHA guidelines for coronary artery bypass graft surgery: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines developed in collaboration with the American Association of Thoracic Surgery, Society of Cardiovascular Anesthesiologists, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2011;58:2584–614.

    Article  Google Scholar 

  82. Suaya J, Shepard DS, Normand SL, et al. Use of cardiac rehabilitation by Medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation. 2007;116(15):1653–62.

    Article  PubMed  Google Scholar 

  83. Aragam KG, Dai D, Neely ML, et al. Gaps in referral to cardiac rehabilitation of patients undergoing percutaneous coronary intervention in the United States. J Am Coll Cardiol. 2015;65(19):2079–88. A provocative analysis highlighting the continued underutilization of exercise-based cardiac rehabilitation in U.S. patients undergoing percutaneous coronary revascularization.

    Article  PubMed  Google Scholar 

  84. Brown TM, Hernandez AF, Bittner V, et al. Predictors of cardiac rehabilitation referral in coronary artery disease patients: Findings from the American Heart Association’s Get With The Guidelines Program. J Am Coll Cardiol. 2009;54(6):515–21.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Golwala H, Pandey A, Ju C, et al. Temporal trends and factors associated with cardiac rehabilitation referral among patients hospitalized with heart failure: findings from Get With The Guidelines-Heart Failure Registry. J Am Coll Cardiol. 2015;66(8):917–26. A just published report highlighting the fact that only 1 in 10 eligible patients received cardiac rehabilitation referral at discharge after hospitalization for heart failure, which is now a covered diagnosis.

    Article  PubMed  Google Scholar 

  86. Cortés O, Arthur HM. Determinants of referral to cardiac rehabilitation programs in patients with coronary artery disease: a systematic review. Am Heart J. 2006;151(2):249–56.

    Article  PubMed  Google Scholar 

  87. Galeema ED, Cutler AY, Higgins ST, Ades PA. Smoking and cardiac rehabilitation participation: associations with referral, attendance and adherence. Prev Med. 2015. doi:10.1016/j.ypmed.2015.04.009.

    Google Scholar 

  88. Colbert JD, Martin BJ, Haykowski MJ, et al. Cardiac rehabilitation referral, attendance and mortality in women. Eur J Prev Cardiol. 2015;22(8):979–86.

    Article  PubMed  Google Scholar 

  89. Pack QR, Squires RW, Lopez-Jimenez F, et al. Participation rates, process monitoring, and quality improvement among cardiac rehabilitation participation in the United States. J Cardiopulm Rehabil Prev. 2015;35(3):173–80.

    Article  PubMed  Google Scholar 

  90. Grace SL, Gravely-Witte S, Brual J, et al. Contribution of patient and physician factors to cardiac rehabilitation enrollment: a prospective multilevel study. Eur J Cardiovasc Prev Rehabil. 2008;15(5):548–56.

    Article  PubMed Central  PubMed  Google Scholar 

  91. Smith KM, Harkness K, Arthur HM. Predicting cardiac rehabilitation enrollment: the role of automatic physician referral. Eur J Cardiovasc Prev Rehabil. 2006;13(1):60–6.

    Article  PubMed  Google Scholar 

  92. Grace SL, Russell KL, Reid RD, et al. Effect of cardiac rehabilitation referral strategies on utilization rates: a prospective, controlled study. Arch Intern Med. 2011;171(3):235–41.

    Article  PubMed  Google Scholar 

  93. Scott BL, Gravely S, Sexton TR, et al. Examining the effect of a patient navigation intervention on outpatient cardiac rehabilitation awareness and enrollment. J Cardiopulm Rehabil Prev. 2013;33(5):281–91.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Pack QR, Mansour M, Barboza JS, et al. An early appointment to outpatient cardiac rehabilitation at hospital discharge improves attendance at orientation: a randomized, single-blind controlled trial. Circulation. 2013;127(3):349–55.

    Article  PubMed  Google Scholar 

  95. Harkness K, Smith KM, Taraba L, et al. Effect of a postoperative telephone intervention on attendance at intake for cardiac rehabilitation after coronary artery bypass graft surgery. Heart Lung. 2005;34(3):179–86.

    Article  PubMed  Google Scholar 

  96. Pack QR, Goel K, Lahr BD, et al. Participation in cardiac rehabilitation and survival after coronary artery bypass graft surgery: A community based study. Circulation. 2013;128(6):590–7. A recent report documenting the profound survival benefit (46 % ten-year relative risk reduction in all cause mortality) associated with cardiac rehabilitation participation in patients who undergo coronary artery bypass graft surgery.

    Article  PubMed  Google Scholar 

  97. Hamill BG, Curtis LH, Schulman KA, Whellan DJ. Relationship between cardiac rehabilitation and long-term risks of death and myocardial infarction among elderly Medicare beneficiaries. Circulation. 2010;121(1):63–70.

    Article  Google Scholar 

  98. Martin BJ, Hauer T, Arena R, et al. Cardiac rehabilitation attendance and outcomes in coronary artery disease patients. Circulation. 2012;126(6):677–87.

    Article  PubMed  Google Scholar 

  99. Dunlay SM, Witt BJ, Allison TG, et al. Barriers to participation in cardiac rehabilitation. Am Heart J. 2009;158(5):852–9.

    Article  PubMed Central  PubMed  Google Scholar 

  100. Grace SL, Shanmugasegaram S, Gravely-Witte S, et al. Barriers to cardiac rehabilitation: does age make a difference? J Cardiopulm Rehabil Prev. 2009;29(3):183–7.

    Article  PubMed Central  PubMed  Google Scholar 

  101. Bittner V, Sanderson B, Breland J, Green D. Referral patterns to a University-based cardiac rehabilitation program. Am J Cardiol. 1999;83(2):252–5.

    Article  CAS  PubMed  Google Scholar 

  102. Mitchell MS, Goodman JM, Alter DA, et al. Financial incentives for exercise adherence in adults. Am J Prev Med. 2013;45(5):658–67.

    Article  PubMed  Google Scholar 

  103. Mitchell MS, Goodman JM, Alter DA, et al. ‘Will walk for groceries’: Acceptability of financial health incentives among Canadian cardiac rehabilitation patients. Psychol Health. 2014;29(9):1032–43.

    Article  PubMed  Google Scholar 

  104. Mitchell MS, Goodman JM, Alter DA, et al. The feasibility of financial incentives to increase exercise among Canadian cardiac rehabilitation patients. J Cardiopulm Rehabil Prev. 2015 Sep 22. Accessed 8 Oct 2015.

  105. Beck DT, Martin JS, Casey DP, et al. Enhanced external counterpulsation improves endothelial function and exercise capacity in patients with ischaemic left ventricular dysfunction. Clin Exp Pharmacol Physiol. 2014;41(9):628–36.

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Loh PH, Cleland JG, Louis AA, et al. Enhanced external counterpulsation in the treatment of chronic refractory angina: a long-term follow-up outcome from the International Enhanced External Counterpulsation Patient Registry. Clin Cardiol. 2008;31(4):159–64.

    Article  PubMed  Google Scholar 

  107. Lawson WE, Hui JC, Kennard ED, et al. Enhanced external counterpulsation is cost-effective in reducing hospital costs in refractory angina patients. Clin Cardiol. 2015;38(6):344–9.

    Article  PubMed  Google Scholar 

  108. Urano H, Ikeda H, Ueno T, et al. Enhanced external counterpulsation improves exercise tolerance, reduces exercise-induced myocardial ischemia and improves left ventricular diastolic filling in patients with coronary artery disease. J Am Coll Cardiol. 2001;37(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  109. Tartaglia J, Stenerson Jr J, Charney R, et al. Exercise capability and myocardial perfusion in chronic angina patients treated with enhanced external counterpulsation. Clin Cardiol. 2003;26(6):287–90.

    Article  CAS  PubMed  Google Scholar 

  110. Michaels AD, Raisinghani A, Soran O, et al. The effects of enhanced external counterpulsation on myocardial perfusion in patients with stable angina: a multicenter radionuclide study. Am Heart J. 2005;150(5):1066–73.

    Article  PubMed  Google Scholar 

  111. Silberman A, Banthia R, Estay IS, et al. The effectiveness and efficacy of an intensive cardiac rehabilitation program in 24 sites. Am J Health Promot. 2010;24(4):260–6.

    Article  PubMed  Google Scholar 

  112. Aldana SG, Greenlaw R, Salberg A, et al. The effects of an intensive lifestyle modification program on carotid intima-media thickness: a randomized trial. Am J Health Promot. 2007;21(6):510–6.

    Article  PubMed  Google Scholar 

  113. Zeng W, Stason WB, Fournier S, et al. Benefits and costs of an intensive lifestyle modification programs for symptomatic coronary disease in Medicare beneficiaries. Am Heart J. 2013;165(5):785–92.

    Article  PubMed  Google Scholar 

  114. Pub 100-02 Medicare Benefit Policy. Cardiac Rehabilitation and Intensive Cardiac Rehabilitation. Published May 21, 2010.

  115. Dalal HM, Zawada A, Jolly K, et al. Home based versus centre based cardiac rehabilitation: Cochrane systematic review and meta-analysis. BMJ. 2010;340:b5631. doi:10.1136/bmj.b5631.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Sangster J, Furber S, Allman-Farinelli M, et al. Effectiveness of a pedometer-based telephone coaching program on weight and physical activity for people referred to a cardiac rehabilitation program. J Cardiopulm Rehabil Prev. 2015;35(2):124–9.

    Article  PubMed  Google Scholar 

  117. Maddison R, Pfaeffli L, Whittaker R, et al. A mobile phone intervention increases physical activity in people with cardiovascular disease: Results from the HEART randomized controlled trial. Eur J Prev Cardiol. 2015;22(6):701–9. A provocative report highlighting the role of technology in improving outcomes in patients with cardiovascular disease.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Brenda White, a punctuator par excellence, for her assiduous and laborious checking of references, and for her meticulous preparation of this manuscript.

Compliance with Ethical Standards

Conflict of Interest

Barry A. Franklin and Jenna Brinks each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barry A. Franklin PhD, MAACVPR, FACSM, FAHA.

Additional information

This article is part of the Topical Collection on Prevention

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Franklin, B.A., Brinks, J. Cardiac Rehabilitation: Underrecognized/Underutilized. Curr Treat Options Cardio Med 17, 62 (2015). https://doi.org/10.1007/s11936-015-0422-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11936-015-0422-x

Keywords

Navigation