Skip to main content

Advertisement

Log in

Update on Animal Models of Migraine

  • Migraine (R Cowan, Section Editor)
  • Published:
Current Pain and Headache Reports Aims and scope Submit manuscript

Abstract

Migraine is a severe and debilitating disorder of the brain that involves a constellation of neurological symptoms alongside head pain. Its pathophysiology is only beginning to be understood, and is thought to involve activation and sensitization of trigeminovascular nociceptive pathways that innervate the cranial vasculature, and activation of brain stem nuclei. Much of our understanding of migraine pathophysiology stems from research conducted in animal models over the last 30 years, and the development of unique assays in animals that try to model specific aspects of migraine pathophysiology related to particular symptoms. This review will highlight some of the latest findings from these established animal models, as well as discuss the latest in the development of novel approaches in animals to study migraine

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lipton RB, Bigal ME, Diamond M, Freitag F, Reed ML, Stewart WF. Migraine prevalence, disease burden, and the need for preventive therapy. Neurology. 2007;68(5):343–9.

    Article  PubMed  CAS  Google Scholar 

  2. Headache Classification Committee of the International Headache Society. The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia. 2013;33(9):629–808.

    Article  Google Scholar 

  3. Akerman S, Holland PR, Goadsby PJ. Diencephalic and brainstem mechanisms in migraine. Nat Rev Neurosci. 2011;12(10):570–84.

    Article  PubMed  CAS  Google Scholar 

  4. Pietrobon D, Moskowitz MA. Pathophysiology of migraine. Annu Rev Physiol. 2013;75:365–91.

    Article  PubMed  CAS  Google Scholar 

  5. Noseda R, Burstein R. Migraine pathophysiology: anatomy of the trigeminovascular pathway and associated neurological symptoms, CSD, sensitization and modulation of pain. Pain. 2013.

  6. Bernstein C, Burstein R. Sensitization of the trigeminovascular pathway: perspective and implications to migraine pathophysiology. J Clin Neurol. 2012;8(2):89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Goadsby PJ, Lipton RB, Ferrari MD. Migraine–current understanding and treatment. N Engl J Med. 2002;346(4):257–70.

    Article  PubMed  CAS  Google Scholar 

  8. Penfield W, McNaughton F. Dural headache and innervation of the dura mater. Arch Neurol Psychiatry. 1940;44:43–75.

    Article  Google Scholar 

  9. Ray BS, Wolff HG. Experimental studies on headache. Pain sensitive structures of the head and their significance in headache. Arch Surg. 1940;41:813–56.

    Article  Google Scholar 

  10. McNaughton FL, Feindel W. Innervation of intracranial structures: a reappraisal. In: Rose FC, editor. Physiological aspects of clinical neurology. Oxford: Blackwell Scientific; 1977. p. 279–93.

    Google Scholar 

  11. Lambert GA, Goadsby PJ, Zagami AS, Duckworth JW. Comparative effects of stimulation of the trigeminal ganglion and the superior sagittal sinus on cerebral blood flow and evoked potentials in the cat. Brain Res. 1988;453(1–2):143–9.

    Article  PubMed  CAS  Google Scholar 

  12. Hoskin KL, Zagami AS, Goadsby PJ. Stimulation of the middle meningeal artery leads to Fos expression in the trigeminocervical nucleus: a comparative study of monkey and cat. J Anat. 1999;194(Pt4):579–88.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Strassman AM, Raymond SA, Burstein R. Sensitization of meningeal sensory neurons and the origin of headaches. Nature. 1996;384(6609):560–4.

    Article  PubMed  CAS  Google Scholar 

  14. Strecker T, Dux M, Messlinger K. Increase in meningeal blood flow by nitric oxide - interaction with calcitonin gene-related peptide receptor and prostaglandin synthesis inhibition. Cephalalgia. 2002;22(3):233–41.

    Article  PubMed  CAS  Google Scholar 

  15. Kurosawa M, Messlinger K, Pawlak M, Schmidt RF. Increase of meningeal blood flow after electrical stimulation of rat dura mater encephali: mediation by calcitonin gene-related peptide. Br J Pharmacol. 1995;114(7):1397–402.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Akerman S, Holland PR, Hoffmann J. Pearls and pitfalls in experimental in vivo models of migraine: Dural trigeminovascular nociception. Cephalalgia. 2013;33(8):577–92.

    Article  PubMed  Google Scholar 

  17. Andreou AP, Summ O, Charbit AR, Romero-Reyes M, Goadsby PJ. Animal models of headache: from bedside to bench and back to bedside. Expert Rev Neurother. 2010;10(3):389–411. doi:10.1586/ern.10.16.

    Article  PubMed  Google Scholar 

  18. Bergerot A, Holland PR, Akerman S, Bartsch T, Ahn AH, Maassenvandenbrink A, et al. Animal models of migraine: looking at the component parts of a complex disorder. Eur J Neurosci. 2006;24(6):1517–34.

    Article  PubMed  CAS  Google Scholar 

  19. Jansen-Olesen I, Tfelt-Hansen P, Olesen J. Animal migraine models for drug development: status and future perspectives. CNS Drugs. 2013;27(12):1049–68. doi:10.1007/s40263-013-0121-7.

    Article  PubMed  CAS  Google Scholar 

  20. Afridi SK, Giffin NJ, Kaube H, Friston KJ, Ward NS, Frackowiak RS, et al. A positron emission tomographic study in spontaneous migraine. Arch Neurol. 2005;62(8):1270–5.

    Article  PubMed  Google Scholar 

  21. Burstein R, Jakubowski M, Garcia-Nicas E, Kainz V, Bajwa Z, Hargreaves R, et al. Thalamic sensitization transforms localized pain into widespread allodynia. Ann Neurol. 2010;68(1):81–91.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Denuelle M, Fabre N, Payoux P, Chollet F, Geraud G. Hypothalamic activation in spontaneous migraine attacks. Headache. 2007;47(10):1418–26.

    PubMed  Google Scholar 

  23. Weiller C, May A, Limmroth V, Juptner M, Kaube H, Schayck RV, et al. Brain stem activation in spontaneous human migraine attacks. Nat Med. 1995;1(7):658–60.

    Article  PubMed  CAS  Google Scholar 

  24. Goadsby PJ, Charbit AR, Andreou AP, Akerman S, Holland PR. Neurobiology of migraine. Neuroscience. 2009;161(2):327–41.

    Article  PubMed  CAS  Google Scholar 

  25. Lambert GA, Hoskin KL, Michalicek J, Panahi SE, Truong L, Zagami AS. Stimulation of dural vessels excites the SI somatosensory cortex of the cat via a relay in the thalamus. Cephalalgia. 2013. doi:10.1177/0333102413508239. Alongside 26, the first studies to how patients can localize their pain to specific cranial regions, through activation of specific cortical regions.

    Google Scholar 

  26. Noseda R, Jakubowski M, Kainz V, Borsook D, Burstein R. Cortical projections of functionally identified thalamic trigeminovascular neurons: implications for migraine headache and its associated symptoms. J Neurosci. 2011;31(40):14204–17. Alongside 25, the first studies to how patients can localize their pain to specific cranial regions, through activation of specific cortical regions.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Goadsby PJ, Edvinsson L, Ekman R. Vasoactive peptide release in the extracerebral circulation of humans during migraine headache. Ann Neurol. 1990;28(2):183–7.

    Article  PubMed  CAS  Google Scholar 

  28. Tuka B, Helyes Z, Markovics A, Bagoly T, Szolcsanyi J, Szabo N, et al. Alterations in PACAP-38-like immunoreactivity in the plasma during ictal and interictal periods of migraine patients. Cephalalgia. 2013;33(13):1085–95.

    Article  PubMed  Google Scholar 

  29. Zagami AS, Edvinsson L, Hoskin KL, Goadsby PJ. Stimulation of the superior sagittal sinus causes exracranial release of PACAP. Cephalalgia. 1995;14 Suppl 14:109.

    Google Scholar 

  30. Zagami AS, Goadsby PJ, Edvinsson L. Stimulation of the superior sagittal sinus in the cat causes release of vasoactive peptides. Neuropeptides. 1990;16(2):69–75.

    Article  PubMed  CAS  Google Scholar 

  31. Burstein R, Yamamura H, Malick A, Strassman AM. Chemical stimulation of the intracranial dura induces enhanced responses to facial stimulation in brain stem trigeminal neurons. J-Neurophysiol. 1998;79(2):964–82.

    PubMed  CAS  Google Scholar 

  32. Burstein R, Yarnitsky D, Goor-Aryeh I, Ransil BJ, Bajwa ZH. An association between migraine and cutaneous allodynia. Ann Neurol. 2000;47(5):614–24.

    Article  PubMed  CAS  Google Scholar 

  33. Bigal ME, Ashina S, Burstein R, Reed ML, Buse D, Serrano D, et al. Prevalence and characteristics of allodynia in headache sufferers: a population study. Neurology. 2008;70(17):1525–33.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, et al. A neural mechanism for exacerbation of headache by light. Nat Neurosci. 2010;13(2):239–45. First studies to demonstrate the neural basis by photophobia in migraine, mediated by dural nociceptive afferents.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Noseda R, Burstein R. Advances in understanding the mechanisms of migraine-type photophobia. Curr Opin Neurol. 2011;24(3):197–202.

    Article  PubMed  Google Scholar 

  36. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and "triptan" receptors: implications in migraine. J Neurosci. 2013;33(37):14869–77. doi:10.1523/JNEUROSCI.0943-13.2013.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Akerman S, Holland PR, Lasalandra MP, Goadsby PJ. Oxygen inhibits neuronal activation in the trigeminocervical complex after stimulation of trigeminal autonomic reflex, but not during direct dural activation of trigeminal afferents. Headache. 2009;49(8):1131–43.

    Article  PubMed  Google Scholar 

  38. Akerman S, Holland PR, Summ O, Lasalandra MP, Goadsby PJ. A translational in vivo model of trigeminal autonomic cephalalgias: therapeutic characterization. Brain. 2012;135(Pt 12):3664–75. Characterisation of an animal model of trigeminal autonomic cephalagias, with prominent trigeminovascular and autonomic features, and describes a novel locus for treatments through the parasympathetic outflow to the cranial vasculature.

    Article  PubMed  Google Scholar 

  39. Spencer SE, Sawyer WB, Wada H, Platt KB, Loewy AD. CNS projections to the pterygopalatine parasympathetic preganglionic neurons in the rat: a retrograde transneuronal viral cell body labeling study. Brain Res. 1990;534(1–2):149–69.

    PubMed  CAS  Google Scholar 

  40. Lai T-H, Fuh J-L, Wang S-J. Cranial autonomic symptoms in migraine: characteristics and comparison with cluster headache. J Neurol Neurosurg Psychiatry. 2009;80:1116–9.

    Article  PubMed  Google Scholar 

  41. Robert C, Bourgeais L, Arreto CD, Condes-Lara M, Noseda R, Jay T, et al. Paraventricular hypothalamic regulation of trigeminovascular mechanisms involved in headaches. J Neurosci. 2013;33(20):8827–40. Demonstrates paraventricular mediated modulation of nociceptive trigeminovascular neurons, with implications of hypothalamic nuclei involved in the triggering of migraine.

    Article  PubMed  CAS  Google Scholar 

  42. Rasmussen BK, Olesen J. Migraine with aura and migraine without aura: an epidemiological study. Cephalalgia. 1992;12:221–8.

    Article  PubMed  CAS  Google Scholar 

  43. Lashley KS. Patterns of cerebral integration indicated by the scotomas of migraine. Arch Neurol Psychiatr. 1941;46:331–9.

    Article  Google Scholar 

  44. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117(Pt 1):199–210.

    Article  PubMed  Google Scholar 

  45. Eikermann-Haerter K, Moskowitz MA. Animal models of migraine headache and aura. Curr Opin Neurol. 2008;21(3):294–300.

    Article  PubMed  Google Scholar 

  46. Hadjikhani N, Sanchez Del Rio M, Wu O, Schwartz D, Bakker D, Fischl B, et al. Mechanisms of migraine aura revealed by functional MRI in human visual cortex. Proc Natl Acad Sci U S A. 2001;98(8):4687–92. doi:10.1073/pnas.071582498.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Olesen J, Larsen B, Lauritzen M. Focal hyperemia followed by spreading oligemia and impaired activation of rCBF in classic migraine. Ann Neurol. 1981;9(4):344–52.

    Article  PubMed  CAS  Google Scholar 

  48. Bolay H, Reuter U, Dunn AK, Huang Z, Boas DA, Moskowitz MA. Intrinsic brain activity triggers trigeminal meningeal afferents in a migraine model. Nat Med. 2002;8(2):136–42.

    Article  PubMed  CAS  Google Scholar 

  49. Zhang X, Levy D, Kainz V, Noseda R, Jakubowski M, Burstein R. Activation of central trigeminovascular neurons by cortical spreading depression. Ann Neurol. 2011;69(5):855–65.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang X, Levy D, Noseda R, Kainz V, Jakubowski M, Burstein R. Activation of meningeal nociceptors by cortical spreading depression: implications for migraine with aura. J Neurosci. 2010;30(26):8807–14.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  51. Noseda R, Constandil L, Bourgeais L, Chalus M, Villanueva L. hanges of meningeal excitability mediated by corticotrigeminal networks: a link for the endogenous modulation of migraine pain. J Neurosci. 2010;30(43):14420–9. First study to demonstrate that CSD triggered in different cortical regions may inhibit or excite trigeminovascular noxious and innocuous responses.

    Article  PubMed  CAS  Google Scholar 

  52. Lambert GA, Truong L, Zagami AS. Effect of cortical spreading depression on basal and evoked traffic in the trigeminovascular sensory system. Cephalalgia. 2011.

  53. Iversen HK, Olesen J, Tfelt-hansen P. Intravenous Nitroglycerin As an Experimental-Model of Vascular Headache - Basic Characteristics. Pain. 1989;38(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  54. Schytz HW, Schoonman GG, Ashina M. What have we learnt from triggering migraine? Curr Opin Neurol. 2010;23(3):259–65.

    Article  PubMed  CAS  Google Scholar 

  55. Olesen J, Jansen-Olesen I. Towards a reliable animal model of migraine. Cephalalgia. 2012;32(7):578–80. doi:10.1177/0333102412441719.

    Article  PubMed  Google Scholar 

  56. Amin FM, Asghar MS, Hougaard A, Hansen AE, Larsen VA, de Koning PJ, et al. Magnetic resonance angiography of intracranial and extracranial arteries in patients with spontaneous migraine without aura: a cross-sectional study. Lancet Neurol. 2013;12(5):454–61.

    Article  PubMed  Google Scholar 

  57. Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD. Migraine headache is not associated with cerebral or meningeal vasodilatation–a 3T magnetic resonance angiography study. Brain. 2008;131(Pt 8):2192–200.

    Article  PubMed  CAS  Google Scholar 

  58. Asghar MS, Hansen AE, Amin FM, van der Geest RJ, Koning P, Larsson HB, et al. Evidence for a vascular factor in migraine. Ann Neurol. 2011;69(4):635–45.

    Article  PubMed  Google Scholar 

  59. Storer RJ, Akerman S, Goadsby PJ. Calcitonin gene-related peptide (CGRP) modulates nociceptive trigeminovascular transmission in the cat. Br J Pharmacol. 2004;142(7):1171–81.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  60. Cumberbatch MJ, Williamson DJ, Mason GS, Hill RG, Hargreaves RJ. Dural vasodilation causes a sensitization of rat caudal trigeminal neurones in vivo that is blocked by a 5-HT1B/1D agonist. Br J Pharmacol. 1999;126(6):1478–86.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  61. Levy D, Burstein R, Strassman AM. Calcitonin gene-related peptide does not excite or sensitize meningeal nociceptors: implications for the pathophysiology of migraine. Ann Neurol. 2005;58(5):698–705.

    Article  PubMed  CAS  Google Scholar 

  62. Koulchitsky S, Fischer MJ, De Col R, Schlechtweg PM, Messlinger K. Biphasic response to nitric oxide of spinal trigeminal neurons with meningeal input in rat–possible implications for the pathophysiology of headaches. J Neurophysiol. 2004;92(3):1320–8.

    Article  PubMed  CAS  Google Scholar 

  63. Akerman S, Hoffmann J, Goadsby PJ. A Translational Approach to Studying Triptan-Induced Reversal of Established Central Sensitization of Trigeminovascular Neurons. Cephalalgia. 2013;33(8 (S1)):211.

    Google Scholar 

  64. Akerman S, Goadsby PJ. Acute Anti-Migraine Treatments Abort Established Central Sensitization of Trigeminovascular Neurons: Validation of a Novel Translational Approach. Headache. 2014;54(S1):2–3.

    Google Scholar 

  65. Mogil JS, Davis KD, Derbyshire SW. The necessity of animal models in pain research. Pain. 2010;151(1):12–7.

    Article  PubMed  Google Scholar 

  66. Romero-Reyes M, Ye Y. Pearls and pitfalls in experimental in vivo models of headache: Conscious behavioral research. Cephalalgia. 2013;33(8):566–76. doi:10.1177/0333102412472557. A detailed review of the methodology of behavioral animal models of headache.

    Article  PubMed  Google Scholar 

  67. Lipton RB, Bigal ME, Ashina S, Burstein R, Silberstein S, Reed ML, et al. Cutaneous allodynia in the migraine population. Ann Neurol. 2008;63(2):148–58.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Edelmayer RM, Vanderah TW, Majuta L, Zhang ET, Fioravanti B, De Felice M, et al. Medullary pain facilitating neurons mediate allodynia in headache-related pain. Ann Neurol. 2009;65(2):184–93.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  69. Oshinsky ML, Gomonchareonsiri S. Episodic dural stimulation in awake rats: a model for recurrent headache. Headache. 2007;47(7):1026–36. doi:10.1111/j.1526-4610.2007.00871.x.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Tfelt-Hansen P, Lous I, Olesen J. Prevalence and significance of muscle tenderness during common migraine attacks. Headache. 1981;21(2):49–54.

    Article  PubMed  CAS  Google Scholar 

  71. Oshinsky ML. Insights from experimental studies into allodynia and its treatment. Curr Pain Headache Rep. 2006;10(3):225–30.

    Article  PubMed  Google Scholar 

  72. Burstein R, Collins B, Jakubowski M. Defeating migraine pain with triptans: a race against the development of cutaneous allodynia. Ann Neurol. 2004;55(1):19–26.

    Article  PubMed  CAS  Google Scholar 

  73. Daudia AT, Jones NS. Facial migraine in a rhinological setting. Clin Otolaryngol Allied Sci. 2002;27(6):521–5.

    Article  PubMed  CAS  Google Scholar 

  74. Obermann M, Mueller D, Yoon M-S, Pageler L, Diener H, Katsarava Z. Migraine With Isolated Facial Pain: A Diagnostic Challenge. Cephalalgia. 2007;27(11):1278–82. doi:10.1111/j.1468-2982.2007.01413.x.

    Article  PubMed  CAS  Google Scholar 

  75. Silberstein. Headache and other head pain. 7th ed. New York: Oxford University Press; 2001.

    Google Scholar 

  76. Stucky NL, Gregory E, Winter MK, He YY, Hamilton ES, McCarson KE, et al. Sex differences in behavior and expression of CGRP-related genes in a rodent model of chronic migraine. Headache. 2011;51(5):674–92.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bates E, Nikai T, Brennan K, Fu YH, Charles A, Basbaum A et al. Sumatriptan alleviates nitroglycerin-induced mechanical and thermal allodynia in mice. Cephalalgia. 2009.

  78. Pradhan AA, Smith ML, McGuire B, Tarash I, Evans CJ, Charles A. Characterization of a novel model of chronic migraine. Pain. 2014;155(2):269–74. doi:10.1016/j.pain.2013.10.004.

    Article  PubMed  CAS  Google Scholar 

  79. Pradhan AA, Smith ML, Zyuzin J, Charles A. delta-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice. Br J Pharmacol. 2014;171(9):2375–84. doi:10.1111/bph.12591. Use of conditioned place aversion in a model of chronic migraine with the use of NTG.

    Article  PubMed  CAS  Google Scholar 

  80. Tzschentke TM. Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol. 2007;12(3–4):227–462. doi:10.1111/j.1369-1600.2007.00070.x.

    Article  PubMed  CAS  Google Scholar 

  81. Mogil JS. Animal models of pain: progress and challenges. Nat Rev Neurosci. 2009;10(4):283–94.

    Article  PubMed  CAS  Google Scholar 

  82. Backonja MM, Stacey B. Neuropathic pain symptoms relative to overall pain rating. J Pain. 2004;5(9):491–7.

    Article  PubMed  Google Scholar 

  83. Romero-Reyes M, Akerman S, Nguyen E, Vijjeswarapu A, Hom B, Dong HW, et al. Spontaneous Behavioral Responses in the Orofacial Region: A Model of Trigeminal Pain in Mouse. Headache. 2013;53(1):137–51. Characteriation of spontaneous (non-evoked) grooming nociceptive behaviors in the orofacial region.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Melo-Carrillo A, Lopez-Avila A. A chronic animal model of migraine, induced by repeated meningeal nociception, characterized by a behavioral and pharmacological approach. Cephalalgia. 2013;33(13):1096–105. doi:10.1177/0333102413486320. Chronic model of migraine who presents spontaneos (non-evoked) behaviors as unilateral grooming in response to inflammatory soup infusion.

    Article  PubMed  Google Scholar 

  85. Langford DJ, Bailey AL, Chanda ML, Clarke SE, Drummond TE, Echols S, et al. Coding of facial expressions of pain in the laboratory mouse. Nat Methods. 2010;7(6):447–9.

    Article  PubMed  CAS  Google Scholar 

  86. van den Maagdenberg AM, Pietrobon D, Pizzorusso T, Kaja S, Broos LA, Cesetti T, et al. A Cacna1a knockin migraine mouse model with increased susceptibility to cortical spreading depression. Neuron. 2004;41(5):701–10.

    Article  PubMed  Google Scholar 

  87. Mogil JS, Ritchie J, Sotocinal SG, Smith SB, Croteau S, Levitin DJ, et al. Screening for pain phenotypes: analysis of three congenic mouse strains on a battery of nine nociceptive assays. Pain. 2006;126(1–3):24–34. doi:10.1016/j.pain.2006.06.004.

    Article  PubMed  Google Scholar 

  88. Chanda ML, Tuttle AH, Baran I, Atlin C, Guindi D, Hathaway G, et al. Behavioral evidence for photophobia and stress-related ipsilateral head pain in transgenic Cacna1a mutant mice. Pain. 2013;154(8):1254–62. doi:10.1016/j.pain.2013.03.038. Multiple behavioral assessments including photophobia supporting Cacna1a mice as a reliable model to study migraine pathophysiology and to screen novel therapeutics.

    Article  PubMed  Google Scholar 

  89. Okamoto K, Tashiro A, Chang Z, Bereiter DA. Bright light activates a trigeminal nociceptive pathway. Pain. 149(2):235-42.

  90. Recober A, Kuburas A, Zhang Z, Wemmie JA, Anderson MG, Russo AF. Role of calcitonin gene-related peptide in light-aversive behavior: implications for migraine. J Neurosci. 2009;29(27):8798–804.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  91. Recober A, Kaiser EA, Kuburas A, Russo AF. Induction of multiple photophobic behaviors in a transgenic mouse sensitized to CGRP. Neuropharmacology. 2009.

  92. Malick A, Jakubowski M, Elmquist JK, Saper CB, Burstein R. A neurohistochemical blueprint for pain-induced loss of appetite. Proc Natl Acad Sci U S A. 2001;98(17):9930–5.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  93. Barrett CF, van den Maagdenberg AM, Frants RR, Ferrari MD. Familial hemiplegic migraine. Adv Genet. 2008;63:57–83. doi:10.1016/S0065-2660(08)01003-1.

    Article  PubMed  CAS  Google Scholar 

  94. Pietrobon D. Familial hemiplegic migraine. Neurother: J Am Soc Exp NeuroTher. 2007;4(2):274–84. doi:10.1016/j.nurt.2007.01.008.

    Article  CAS  Google Scholar 

  95. van den Maagdenberg AM, Pizzorusso T, Kaja S, Terpolilli N, Shapovalova M, Hoebeek FE, et al. High cortical spreading depression susceptibility and migraine-associated symptoms in Ca(v)2.1 S218L mice. Ann Neurol. 2010;67(1):85–98.

    Article  PubMed  Google Scholar 

  96. Leo L, Gherardini L, Barone V, De Fusco M, Pietrobon D, Pizzorusso T, et al. Increased susceptibility to cortical spreading depression in the mouse model of familial hemiplegic migraine type 2. PLoS Genet. 2011;7(6):e1002129. doi:10.1371/journal.pgen.1002129.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  97. Mathew R, Andreou AP, Chami L, Bergerot A, van den Maagdenberg AM, Ferrari MD, et al. Immunohistochemical characterization of calcitonin gene-related peptide in the trigeminal system of the familial hemiplegic migraine 1 knock-in mouse. Cephalalgia. 2011;31(13):1368–80. doi:10.1177/0333102411418847.

    Article  PubMed  Google Scholar 

  98. Park J, Moon H, Akerman S, Holland PR, Lasalandra MP, Andreou AP, et al. Differential trigeminovascular nociceptive responses in the thalamus in the familial hemiplegic migraine 1 knock-in mouse: A Fos protein study. Neurobiol Dis. 2014;64:1–7.

    Article  PubMed  CAS  Google Scholar 

  99. Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005;434(7033):640–4. doi:10.1038/nature03453.

    Article  PubMed  CAS  Google Scholar 

  100. Brennan KC, Bates EA, Shapiro RE, Zyuzin J, Hallows WC, Huang Y, et al. Casein kinase idelta mutations in familial migraine and advanced sleep phase. Sci Transl Med. 2013;5(183):183ra56. 1-11. Demonstration of genetic link to migraine that is not related to familial hemiplegic migraine, but a sleep disorder, and the first characterisation of a mutant mouse carrying the human gene mutation and its migrainous phenotype.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dr. Marcela Romero-Reyes and Dr. Simon Akerman each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcela Romero-Reyes.

Additional information

This article is part of the Topical Collection on Migraine

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romero-Reyes, M., Akerman, S. Update on Animal Models of Migraine. Curr Pain Headache Rep 18, 462 (2014). https://doi.org/10.1007/s11916-014-0462-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11916-014-0462-z

Keywords

Navigation