Skip to main content
Log in

On the Relation of Bone Mineral Density and the Elastic Modulus in Healthy and Pathologic Bone

  • Biomechanics (G Niebur and J Wallace, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Osteoporosis could lead to the bone mechanical failure. To examine the bone health, mechanical properties are often estimated from the images of the bone density. Here, we review the relationships that have been experimentally determined between mineral density and the elastic modulus and factors that affect these relationships.

Recent Findings

Studies, which have investigated the relation between the elastic modulus and bone mineral at the bulk scale, have shown that approximately 70% of variations in the elastic modulus can be explained based on the amount of mineral in bone. At the tissue level, however, higher resolution techniques are used to characterize the density and modulus more locally, and this leads to the correlation of mineral with modulus to be not as strong as that of the bulk level and often times, insignificant. This observation indicates the importance of structural hierarchy and mineral crystal organization in determining the local stiffness of the bone tissue.

Summary

At the bulk level in bone (cm scale), modulus (E) is related to density (ρ) through a power law relationship (Eρα). At the tissue level (μm–mm scale), the relationship between the modulus and density is weak, likely due to the effect of microstructural features at small length scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance, •• Of major importance

  1. Currey JD. Bones: structure and mechanics. Princeton: Princeton University Press; 2002.

    Google Scholar 

  2. Currey JD. The effect of porosity and mineral content on the Young’s modulus of elasticity of compact bone. J Biomech. 1988;21(2):131–9.

    Article  PubMed  CAS  Google Scholar 

  3. Carter DR, Hayes WC. The compressive behavior of bone as a two-phase porous structure. JBJS. 1977;59(7):954–62.

    Article  CAS  Google Scholar 

  4. McElhaney JH, Fogle JL, Melvin JW, Haynes RR, Roberts VL, Alem NM. Mechanical properties of cranial bone. J Biomech. 1970;3(5):495–511.

    Article  PubMed  CAS  Google Scholar 

  5. Keller TS. Predicting the compressive mechanical behavior of bone. J Biomech. 1994;27(9):1159–68.

    Article  PubMed  CAS  Google Scholar 

  6. Rice JC, Cowin SC, Bowman JA. On the dependence of the elasticity and strength of cancellous bone on apparent density. J Biomech. 1988;21(2):155–68.

    Article  PubMed  CAS  Google Scholar 

  7. Nicholson PHF, Cheng XG, Loweta G, Boonen S, Davie MWJ, Dequeker J, Van der Perre G. Structural and material mechanical properties of human vertebral cancellous bone. Med Eng Phys. 1997;19(8):729–37.

  8. Hodgskinson R, Currey JD. Separate effects of osteoporosis and density on the strength and stiffness of human cancellous bone. Clin Biomech. 1993;8(5):262–8.

    Article  CAS  Google Scholar 

  9. Rho JY, Ashman RB, Turner CH. Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements. J Biomech. 1993;26(2):111–9.

    Article  PubMed  CAS  Google Scholar 

  10. Bouxsein ML, Radloff SE. Quantitative ultrasound of the calcaneus reflects the mechanical properties of calcaneal trabecular bone. J Bone Miner Res. 1997;12(5):839–46.

    Article  PubMed  CAS  Google Scholar 

  11. Rho JY, Hobatho MC, Ashman RB. Relations of mechanical properties CT numbers in human bone. Med Eng Phys. 1995;17(5):347–55.

  12. Lotz JC, Gerhart TN, Hayes WC. Mechanical properties of metaphyseal bone in the proximal femur. J Biomech. 1991;24(5):317–29.

    Article  PubMed  CAS  Google Scholar 

  13. Martin RB, Boardman DL. The effects of collagen fiber orientation, porosity, density, and mineralization on bovine cortical bone bending properties. J Biomech. 1993;26(9):1047–54.

    Article  PubMed  CAS  Google Scholar 

  14. Schaffler MB, Burr DB. Stiffness of compact bone: effects of porosity and density. J Biomech. 1988;21(1):13–6.

    Article  PubMed  CAS  Google Scholar 

  15. Morgan EF, Bayraktar HH, Keaveny TM. Trabecular bone modulus–density relationships depend on anatomic site. J Biomech. 2003;36(7):897–904.

    Article  PubMed  Google Scholar 

  16. Kopperdahl DL, Keaveny TM. Yield strain behavior of trabecular bone. J Biomech. 1998;31(7):601–8.

    Article  PubMed  CAS  Google Scholar 

  17. Snyder SM, Schneider E. Estimation of mechanical properties of cortical bone by computed tomography. J Orthop Res. 1991;9(3):422–31.

    Article  PubMed  CAS  Google Scholar 

  18. Gibson LJ. Biomechanics of cellular solids. J Biomech. 2005;38(3):377–99.

    Article  PubMed  Google Scholar 

  19. Katz JL. Hard tissue as a composite material—I. Bounds on the elastic behavior. J Biomech. 1971;4(5):455–73.

    Article  PubMed  CAS  Google Scholar 

  20. Helgason B, Perilli E, Schileo E, Taddei F, Brynjólfsson S, Viceconti M. Mathematical relationships between bone density and mechanical properties: a literature review. Clin Biomech. 2008;23(2):135–46.

    Article  Google Scholar 

  21. Angker L, Nockolds C, Swaina MV, Kilpatrick N. Correlating the mechanical properties to the mineral content of carious dentine—a comparative study using an ultra-micro indentation system (UMIS) and SEM-BSE signals. Arch Oral Biol. 2004;49(5):369–78.

    Article  PubMed  CAS  Google Scholar 

  22. Hoc T, Henry L, Verdier M, Aubry D, Sedel L, Meunier A. Effect of microstructure on the mechanical properties of Haversian cortical bone. Bone. 2006;38(4):466–74.

    Article  PubMed  CAS  Google Scholar 

  23. Smith LJ, Schirer JP, Fazzalari NL. The role of mineral content in determining the micromechanical properties of discrete trabecular bone remodeling packets. J Biomech. 2010;43(16):3144–9.

    Article  PubMed  Google Scholar 

  24. Willems NMBK, Mulder L, den Toonder JMJ, Zentner A, Langenbach GEJ. The correlation between mineralization degree and bone tissue stiffness in the porcine mandibular condyle. J Bone Miner Metab. 2014;32(1):29–37.

  25. Doube M, Firth EC, Boyde A, Bushby AJ. Combined nanoindentation testing and scanning electron microscopy of bone and articular calcified cartilage in an equine fracture predilection site. Eur Cell Mater. 2010;19:242–51.

    Article  PubMed  CAS  Google Scholar 

  26. • Zebaze RMD, Jones AC, Pandy MG, Knackstedt MA, Seeman E. Differences in the degree of bone tissue mineralization account for little of the differences in tissue elastic properties. Bone. 2011;48(6):1246–51. These authors conducted a complete set of nanoindentation experiments on human bone and compared the elastic modulus with tissue mineral density. They concluded that the mineral-modulus relationship at the tissue level is not significant.

  27. Oyen ML, Ferguson VL, Bembey AK, Bushby AJ, Boyde A. Composite bounds on the elastic modulus of bone. J Biomech. 2008;41(11):2585–8.

    Article  PubMed  Google Scholar 

  28. Vanleene M, Porter A, Guillot P-V, Boyde A, Oyen M, Shefelbine S. Ultra-structural defects cause low bone matrix stiffness despite high mineralization in osteogenesis imperfecta mice. Bone. 2012;50(6):1317–23.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hengsberger S, Kulik A, Zysset P. Nanoindentation discriminates the elastic properties of individual human bone lamellae under dry and physiological conditions. Bone. 2002;30(1):178–84.

    Article  PubMed  CAS  Google Scholar 

  30. Tjhia CK, Stover SM, Rao DS, Odvina CV, Fyhrie DP. Relating micromechanical properties and mineral densities in severely suppressed bone turnover patients, osteoporotic patients, and normal subjects. Bone. 2012;51(1):114–22.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fratzl-Zelman N, Roschger P, Gourrier A, Weber M, Misof BM, Loveridge N, et al. Combination of nanoindentation and quantitative backscattered electron imaging revealed altered bone material properties associated with femoral neck fragility. Calcif Tissue Int. 2009;85(4):335–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Roschger P, Fratzl P, Eschberger J, Klaushofer K. Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone. 1998;23(4):319–26.

    Article  PubMed  CAS  Google Scholar 

  33. Roschger P, Paschalis EP, Fratzl P, Klaushofer K. Bone mineralization density distribution in health and disease. Bone. 2008;42(3):456–66.

    Article  PubMed  CAS  Google Scholar 

  34. Rodriguez-florez N, Oyen ML, Shefelbine SJ. Insight into differences in nanoindentation properties of bone. J Mech Behav Biomed Mater. 2013;18:90–9.

    Article  PubMed  Google Scholar 

  35. Silva MJ, Brodt MD, Fan Z, Rho J-Y. Nanoindentation and whole-bone bending estimates of material properties in bones from the senescence accelerated mouse SAMP6. J Biomech. 2004;37(11):1639–46.

    Article  PubMed  Google Scholar 

  36. •• Reisinger AG, Pahr DH, Zysset PK. Elastic anisotropy of bone lamellae as a function of fibril orientation pattern. Biomech Model Mechanobiol. 2011;10(1):67–77. These authors formed a micromechanics model of the indentation experiment and showed that by changing the amount or organization of the mineral by altering the alignment of collagen in bone, the elastic modulus varies.

  37. Casanova M, Balmelli A, Carnelli D, Courty D, Schneider P, Muller R. Nanoindentation analysis of the micromechanical anisotropy in mouse cortical bone. R Soc Open Sci. 2017;4(2):160971.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Marotti G, Muglia MA, Palumbo C. Structure and function of lamellar bone. Clin Rheumatol. 1994;13(Suppl 1):63–8.

    PubMed  Google Scholar 

  39. Boskey AL, Wright TM, Blank RD. Collagen and bone strength. J Bone Miner Res. 1999;14(3):330–5.

    Article  PubMed  CAS  Google Scholar 

  40. Viguet-Carrin S, Garnero P, Delmas PD. The role of collagen in bone strength. Osteoporos Int. 2006;17(3):319–36.

    Article  PubMed  CAS  Google Scholar 

  41. Riggs CM, Vaughan LC, Evans GP, Lanyon LE, Boyde A. Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat Embryol (Berl). 1993;187(3):239–48.

    CAS  Google Scholar 

  42. Puustjarvi K, Nieminen J, Rasanen T, Hyttinen M, Helminen HJ, Kroger H, et al. Do more highly organized collagen fibrils increase bone mechanical strength in loss of mineral density after one-year running training? J Bone Miner Res. 1999;14(3):321–9.

    Article  PubMed  CAS  Google Scholar 

  43. Nobakhti S, Limbert G, Thurner PJ. Cement lines and interlamellar areas in compact bone as strain amplifiers—contributors to elasticity, fracture toughness and mechanotransduction. J Mech Behav Biomed Mater. 2014;29:235–51.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra J. Shefelbine.

Ethics declarations

Conflict of Interest

Sabah Nobakhti and Sandra Shefelbine declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Biomechanics

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nobakhti, S., Shefelbine, S.J. On the Relation of Bone Mineral Density and the Elastic Modulus in Healthy and Pathologic Bone. Curr Osteoporos Rep 16, 404–410 (2018). https://doi.org/10.1007/s11914-018-0449-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0449-5

Keywords

Navigation