Skip to main content
Log in

Genetics of Paget’s Disease of Bone

  • Skeletal Genetics (ML Johnson and S Ralston, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Paget’s disease of bone (PDB) is a common condition, which is characterised by focal areas of increased and disorganized bone remodeling. Genetic factors play an important role in the disease. In some cases, Paget’s disease is inherited in an autosomal dominant manner and the most common cause for this is a mutation in the SQSTM1 gene. Other familial cases have been linked to the OPTN locus on Chromosome 10p13 and still other variants have been identified by genome wide association studies that lie within or close to genes that play roles in osteoclast differentiation and function. Mutations in TNFRSF11A, TNFRSF11B and VCP have been identified in rare syndromes with PDB-like features. These advances have improved understanding of bone biology and the causes of PDB. The identification of genetic markers for PDB also raises the prospect that genetic profiling could identify patients at high risk of developing complications, permitting enhanced surveillance and early therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ralston SH. Clinical practice. Paget's disease of bone. N Engl J Med. 2013;368:644–50. Up-to-date review on clinical aspects of Paget’s disease, including clinical features and management.

  2. Monsell EM, Bone HG, Cody DD, Jacobson GP, Newman CW, Patel SC, et al. Hearing loss in Paget's disease of bone: evidence of auditory nerve integrity. Am J Otol. 1995;16:27–33.

    CAS  PubMed  Google Scholar 

  3. van Staa TP, Selby P, Leufkens HG, Lyles K, Sprafka JM, Cooper C. Incidence and natural history of Paget's disease of bone in England and Wales. J Bone Miner Res. 2002;17:465–71.

    Article  PubMed  Google Scholar 

  4. Mays S. Archaeological skeletons support a northwest European origin for Paget's disease of bone. J Bone Miner Res. 2010;25:1839–41.

    Article  PubMed  Google Scholar 

  5. Lucas GJ, Hocking LJ, Daroszewska A, Cundy T, Nicholson GC, Walsh JP, et al. Ubiquitin-associated domain mutations of SQSTM1 in Paget's disease of bone: evidence for a founder effect in patients of British descent. J Bone Miner Res. 2005;20:227–31.

    Article  CAS  PubMed  Google Scholar 

  6. Poor G, Donath J, Fornet B, Cooper C. Epidemiology of Paget's disease in Europe: the prevalence is decreasing. J Bone Miner Res. 2006;21:1545–9.

    Article  PubMed  Google Scholar 

  7. Cundy HR, Gamble G, Wattie D, Rutland M, Cundy T. Paget's disease of bone in New Zealand: continued decline in disease severity. Calcif Tissue Int. 2004;75:358–64.

    Article  CAS  PubMed  Google Scholar 

  8. Bolland MJ, Tong PC, Naot D, Callon KE, Wattie DJ, Gamble GD, et al. Delayed development of Paget's Disease in offspring inheriting SQSTM1 mutations. J Bone Miner Res. 2007;22:411–5.

    Article  CAS  PubMed  Google Scholar 

  9. Rebel A, Malkani K, Basle M, Bregeon C, Patezour A, Filmon R. Ultrastructural characteristics of osteoclasts in Paget's disease. Rev Rhum Mal Osteoartic. 1974;41:767–71.

    CAS  PubMed  Google Scholar 

  10. Ralston SH, Layfield R. Pathogenesis of Paget disease of bone. Calcif Tissue Int. 2012;91:97–113.

    Article  CAS  PubMed  Google Scholar 

  11. Menaa C, Reddy SV, Kurihara N, Maeda H, Anderson D, Cundy T, et al. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget's disease of bone. J Clin Invest. 2000;105:1833–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Demulder A, Takahashi S, Singer FR, Hosking DJ, Roodman GD. Abnormalities in osteoclast precursors and marrow accessory cells in Paget's disease. Endocrinology. 1993;133:1978–82.

    CAS  PubMed  Google Scholar 

  13. Naot D, Bava U, Matthews B, Callon KE, Gamble GD, Black M, et al. Differential gene expression in cultured osteoblasts and bone marrow stromal cells from patients with Paget's disease of bone. J Bone Miner Res. 2007;22:298–309.

    Article  CAS  PubMed  Google Scholar 

  14. Kurihara N, Zhou H, Reddy SV, Garcia Palacios V, Subler MA, Dempster D, et al. Expression of measles virus nucleocapsid protein in osteoclasts induces Paget's disease-like bone lesions in mice. J Bone Miner Res. 2006;21:446–55.

    Article  CAS  PubMed  Google Scholar 

  15. Matthews BG, Afzal MA, Minor PD, Bava U, Callon KE, Pitto RP, et al. Failure to detect measles virus RNA in bone cells from patients with Paget's disease. J Clin Endocrinol Metab. 2008;93:1398–1401.

  16. Ralston SH, Afzal MA, Helfrich MH, Fraser WD, Gallagher JA, Mee A, et al. Multicenter blinded analysis of RT-PCR detection methods for paramyxoviruses in relation to Paget's disease of bone. J Bone Miner Res. 2007;22:569–77.

    Article  CAS  PubMed  Google Scholar 

  17. Helfrich MH, Hobson RP, Grabowski PS, Zurbriggen A, Cosby SL, Dickson GR, et al. A negative search for a paramyxoviral etiology of Paget's disease of bone: molecular, immunological, and ultrastructural studies in UK patients. J Bone Miner Res. 2000;5:2315–29.

    Article  Google Scholar 

  18. Laurin N, Brown JP, Morissette J, Raymond V. Recurrent mutation of the gene encoding sequestosome 1 (SQSTM1/p62) in Paget Disease of bone. Am J Hum Genet. 2002;70:1582–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hocking LJ, Lucas GJA, Daroszewska A, Mangion J, Olavesen M, Nicholson GC, et al. Domain specific mutations in Sequestosome 1 (SQSTM1) cause familial and sporadic Paget's disease. Hum Mol Genet. 2002;11:2735–9.

    Article  CAS  PubMed  Google Scholar 

  20. Morissette J, Laurin N, Brown JP. Sequestosome 1: mutation frequencies, haplotypes, and phenotypes in familial Paget's Disease of bone. J Bone Miner Res. 2006;21 Suppl 2:38–44.

    Article  Google Scholar 

  21. Hocking LJ, Lucas GJA, Daroszewska A, Cundy T, Nicholson GC, Donath J, et al. Novel UBA domain mutations of SQSTM1 in Paget's disease of bone: genotype phenotype correlation, functional analysis and structural consequences. J Bone Miner Res. 2004;19:1122–7.

    Article  CAS  PubMed  Google Scholar 

  22. Lucas G, Riches P, Hocking L, Cundy T, Nicholson G, Walsh J, et al. Identification of a major locus for Paget Disease on chromosome 10p13 in families of British descent. J Bone Miner Res. 2008;23:58–63.

    Article  CAS  PubMed  Google Scholar 

  23. Albagha OM, Visconti MR, Alonso N, Langston AL, Cundy T, Dargie R, et al. Genome-wide association study identifies variants at CSF1, OPTN and TNFRSF11A as genetic risk factors for Paget's disease of bone. Nat Genet. 2010;42:520–4. Genome wide association study reporting the identification of three new loci for predisposition to PDB. All three loci contain genes that are involved in osteoclast function supporting the hypothesis that PDB is a genetic disorder of osteoclast function.

  24. Laurin N, Brown JP, Lemainque A, Duchesne A, Huot D, Lacourciere Y, et al. Paget disease of bone: mapping of two loci at 5q35-qter and 5q31. Am J Hum Genet. 2001;69:528–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hocking LJ, Herbert CA, Nicholls RK, Williams F, Bennett ST, Cundy T, et al. Genome wide search in familial Paget disease of bone shows evidence of genetic heterogeneity with candidate loci on chromosomes 2q36, 10p13, and 5q35. Am J Hum Genet. 2001;69:1055–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cody JD, Singer FR, Roodman GD, Otterund B, Lewis TB, Leppert M, et al. Genetic linkage of Paget disease of the bone to chromosome 18q. Am J Hum Genet. 1997;61:1117–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hocking L, Slee F, Haslam SI, Cundy T, Nicholson G, Van Hul W, et al. Familial Paget's disease of bone: patterns of inheritance and frequency of linkage to chromosome 18q. Bone. 2000;26:577–80.

    CAS  PubMed  Google Scholar 

  28. Hughes AE, Shearman AM, Weber JL, Barr RJ, Wallace RG, Osterberg PH, et al. Genetic linkage of familial expansile osteolysis to chromosome 18q. Hum Mol Genet. 1994;3:359–61.

    CAS  PubMed  Google Scholar 

  29. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24:45–8.

    CAS  PubMed  Google Scholar 

  30. Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002;17:26–9.

    CAS  PubMed  Google Scholar 

  31. Nakatsuka K, Nishizawa Y, Ralston SH. Phenotypic characterization of early onset Paget's disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res. 2003;18:1381–5.

    CAS  PubMed  Google Scholar 

  32. Whyte MP, Obrecht SE, Finnegan PM, Jones JL, Podgornik MN, McAlister WH, et al. Osteoprotegerin deficiency and juvenile Paget's disease. N Engl J Med. 2002;347:175–84.

    CAS  PubMed  Google Scholar 

  33. Chong B, Hegde M, Fawkner M, Simonet S, Cassinelli H, Coker M, et al. Idiopathic hyperphosphatasia and TNFRSF11B mutations: relationships between phenotype and genotype. J Bone Miner Res. 2003;18:2095–104.

    CAS  PubMed  Google Scholar 

  34. Watts GD, Wyme J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36:377–81.

    CAS  PubMed  Google Scholar 

  35. Albagha OME, Wani S, Visconti MR, Alonso N, Goodman K, Cundy T, et al. Genome-wide association identifies three new susceptibility loci for Paget's disease of bone. Nat Genet. 2011;43:685–9. Extended genome wide association study building on observations in reference 23 to identify additional additional loci for predisposition to PDB, one of which contains a gene known to be involved in regulating fusion of osteoclast precursors.

  36. Albagha OM, Visconti MR, Alonso N, Wani S, Goodman K, Fraser WD, et al. Common susceptibility alleles and SQSTM1 mutations predict disease extent and severity in a multinational study of patients with Paget's disease. J Bone Miner Res. 2013;28:2238–46. Multinational study demonstrating that both SQSTM1 mutations and genetic variants identified from GWAS studies predict severity and complications of PDB with quite strong effects. The work raises the possibility that genetic profiling could be used to identify high risk patients for enhanced surveillance and early intervention.

  37. Langston AL, Campbell MK, Fraser WD, MacLennan GS, Selby PL, Ralston SH. Randomised trial of intensive bisphosphonate treatment vs symptomatic management in Paget's disease of bone. J Bone Miner Res. 2010;25:20–31.

    CAS  PubMed  Google Scholar 

  38. Visconti MR, Langston AL, Alonso N, Goodman K, Selby PL, Fraser WD, et al. Mutations of SQSTM1 are associated with severity and clinical outcome in Paget's disease of bone. J Bone Miner Res. 2010;25:2368–73.

    CAS  PubMed  Google Scholar 

  39. Cavey JR, Ralston SH, Sheppard PW, Ciani B, Gallagher TR, Long JE, et al. Loss of ubiquitin binding is a unifying mechanism by which mutations of SQSTM1 cause Paget's disease of bone. Calcif Tissue Int. 2006;78:271–7.

    CAS  PubMed  Google Scholar 

  40. Wright T, Rea SL, Goode A, Bennett AJ, Ratajczak T, Long JE, et al. The S349T mutation of SQSTM1 links Keap1/Nrf2 signaling to Paget's disease of bone. Bone. 2013;52:699–706.

    CAS  PubMed  Google Scholar 

  41. Goode A, Long JE, Shaw B, Ralston SH, Visconti MR, Gianfrancesco F, et al. Paget disease of bone-associated UBA domain mutations of SQSTM1 exert distinct effects on protein structure and function. Biochim Biophys Acta. 2014;1842:992–1000.

  42. Chamoux E, Couture J, Bisson M, Morissette J, Brown JP, Roux S. The p62 P392L mutation linked to Paget's disease induces activation of human osteoclasts. Mol Endocrinol. 2009;23:1668–80.

    CAS  PubMed  Google Scholar 

  43. Jin W, Chang M, Paul EM, Babu G, Lee AJ, Reiley W, et al. Deubiquitinating enzyme CYLD negatively regulates RANK signaling and osteoclastogenesis in mice. J Clin Invest. 2008;118:1858–1866.

  44. Sundaram K, Shanmugarajan S, Rao DS, Reddy SV. Mutant p62P392L stimulation of osteoclast differentiation in Paget's disease of bone. Endocrinology. 2011;152:4180–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Kurihara N, Hiruma Y, Zhou H, Subler MA, Dempster DW, Singer FR, et al. Mutation of the sequestosome 1 (p62) gene increases osteoclastogenesis but does not induce Paget disease. J Clin Invest. 2007;117:133–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Daroszewska A, van't Hof RJ, Rojas JA, Layfield R, Landao-Basonga E, Rose L, et al. A point mutation in the ubiquitin associated domain of SQSMT1 is sufficient to cause a Paget's disease like disorder in mice. Hum Mol Genet. 2011;20:2734–44.

    CAS  PubMed  Google Scholar 

  47. Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, et al. DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005;202:345–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Kukita T, Wada N, Kukita A, Kakimoto T, Sandra F, Toh K, et al. RANKL-induced DC-STAMP is essential for osteoclastogenesis. J Exp Med. 2004;200:941–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Beauregard M, Gagnon E, Guay-Belanger S, Morissette J, Brown JP, Michou L. Identification of rare genetic variants in novel loci associated with Paget's disease of bone. Hum Genet. 2013;133:755–768.

  50. Middleton-Hardie C, Zhu Q, Cundy H, Lin JM, Callon K, Tong PC, et al. Deletion of aspartate 182 in OPG causes juvenile Paget's disease by impairing both protein secretion and binding to RANKL. J Bone Miner Res. 2006;21:438–45.

    CAS  PubMed  Google Scholar 

  51. Beyens G, Daroszewska A, de Freitas F, Fransen E, Vanhoenacker F, Verbruggen L, et al. Identification of sex-specific associations between polymorphisms of the osteoprotegerin gene, TNFRSF11B, and Paget's disease of bone. J Bone Miner Res. 2007;22:1062–71.

    CAS  PubMed  Google Scholar 

  52. Daroszewska A, Hocking LJ, McGuigan FEA, Langdahl BL, Stone MD, Cundy T, et al. Susceptibility to Paget's disease of bone is influenced by a common polymorphic variant of Osteoprotegerin. J Bone Miner Res. 2004;19:1506–11.

    CAS  PubMed  Google Scholar 

  53. Watts GD, Thomasova D, Ramdeen SK, Fulchiero EC, Mehta SG, Drachman DA, et al. Novel VCP mutations in inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia. Clin Genet. 2007;72:420–6.

    CAS  PubMed  Google Scholar 

  54. Mehta SG, Khare M, Ramani R, Watts GD, Simon M, Osann KE, et al. Genotype-phenotype studies of VCP-associated inclusion body myopathy with Paget disease of bone and/or frontotemporal dementia. Clin Genet. 2013;83:422–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lucas GJ, Mehta SG, Hocking LJ, Stewart TL, Cundy T, Nicholson GC, et al. Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget's disease of bone. Bone. 2006;38:280–5.

    CAS  PubMed  Google Scholar 

  56. Lucas GJ, Mehta SG, Hocking LJ, Stewart TL, Cundy T, Nicholson GC, et al. Evaluation of the role of Valosin-containing protein in the pathogenesis of familial and sporadic Paget's disease of bone. Bone. 2006;38:280–5.

    CAS  PubMed  Google Scholar 

  57. Chung PY, Beyens G, de Freitas F, Boonen S, Geusens P, Vanhoenacker F, et al. Indications for a genetic association of a VCP polymorphism with the pathogenesis of sporadic Paget's disease of bone, but not for TNFSF11 (RANKL) and IL-6 polymorphisms. Mol Genet Metab. 2011;103:287–92.

    CAS  PubMed  Google Scholar 

  58. Obaid R, Wani S, Ralston SH, Albagha OME. OPTN negatively regulates osteoclast formation in vitro. Bone. 2012;50:S92–3.

    Google Scholar 

  59. Crockett JC, Mellis DJ, Shennan KI, Duthie A, Greenhorn J, Scott DI, et al. Signal peptide mutations in rank prevent downstream activation of NFkappaB. J Bone Miner Res. 2011;26:1926–38. An interesting study which shows that the insertion mutations in TNFRSF11A that cause FEO, ESH and early onset PDB actually inhibit NFkB signaling in vitro. This illustrates that further work is required to fully understand why they cause osteoclast activation in vivo.

  60. Schafer AL, Mumm S, El-Sayed I, McAlister WH, Horvai AE, Tom AM, et al. Panostotic expansile bone disease with massive jaw tumor formation and a novel mutation in the signal peptide of RANK. J Bone Miner Res. 2014;29:911–21. Report of extraordinarily severe PDB-like phenotype in patient with insertion mutation in TNFRSF11A illustrating that subtle differences in mutations in exon 1 of this gene can have major clinical consequences.

  61. Gianfrancesco F, Rendina D, DiStefano M, Mingione A, Esposito T, Merlotti D, et al. A nonsynonymous TNFRSF11A variation increases NFkappaB activity and the severity of Paget's disease. J Bone Miner Res. 2012;27:443–52. A phenotype-genotype analysis which reports an association between TNFRSF11A variants and severity of PDB as well as providing evidence that two common coding variants of TNFRSF11A might have functional significance in altering NFkB signaling.

  62. Chung PY, Beyens G, Riches PL, Van Wesenbeeck L, de Freitas F, Jennes K, et al. Genetic variation in the TNFRSF11A gene encoding RANK is associated with susceptibility to Paget's disease of bone. J Bone Miner Res. 2010;25:2316–29.

    CAS  Google Scholar 

  63. Janson C, Kasahara N, Prendergast GC, Colicelli J. RIN3 is a negative regulator of mast cell responses to SCF. PLoS One. 2012;7:e49615.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Taylor A, Mules EH, Seabra MC, Helfrich MH, Rogers MJ, Coxon FP. Impaired prenylation of Rab GTPases in the gunmetal mouse causes defects in bone cell function. Small GTPases. 2011;2:131–42.

    PubMed  PubMed Central  Google Scholar 

  65. Ralston SH. Paget's disease of bone. Br Med J. 1993;306:332–3.

    CAS  Google Scholar 

  66. Merchant A, Smielewska M, Patel N, Akunowicz JD, Saria EA, Delaney J. Somatic mutations in SQSTM1 detected in affected tissues from patients with sporadic Paget's disease of bone. J Bone Miner Res. 2009;24:484–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Matthews BG, Naot D, Bava U, Callon KE, Pitto RP, McCowan SA, et al. Absence of somatic SQSTM1 mutations in Paget's disease of bone. J Clin Endocrinol Metab. 2009;94:691–4.

    CAS  PubMed  Google Scholar 

  68. Michou L, Collet C, Laplanche JL, Orcel P, Cornelis F. Genetics of Paget's disease of bone. Joint Bone Spine. 2006;73:243–8.

    CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

SH Ralston and OME Albagha both declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart H. Ralston.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ralston, S.H., Albagha, O.M.E. Genetics of Paget’s Disease of Bone. Curr Osteoporos Rep 12, 263–271 (2014). https://doi.org/10.1007/s11914-014-0219-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-014-0219-y

Keywords

Navigation