Skip to main content

Advertisement

Log in

Finite Element Analysis of the Hip and Spine Based on Quantitative Computed Tomography

  • Imaging (T Lang, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Quantitative computed tomography (QCT) provides three-dimensional information about bone geometry and the spatial distribution of bone mineral. Images obtained with QCT can be used to create finite element models, which offer the ability to analyze bone strength and the distribution of mechanical stress and physical deformation. This approach can be used to investigate different mechanical loading scenarios (stance and fall configurations at the hip, for example) and to estimate whole bone strength and the relative mechanical contributions of the cortical and trabecular bone compartments. Finite element analyses based on QCT images of the hip and spine have been used to provide important insights into the biomechanical effects of factors such as age, sex, bone loss, pharmaceuticals, and mechanical loading at sites of high clinical importance. Thus, this analysis approach has become an important tool in the study of the etiology and treatment of osteoporosis at the hip and spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Adams JE. Advances in bone imaging for osteoporosis. Nat Rev Endocrinol. 2012;9:28–42.

    Article  Google Scholar 

  2. Blake GM, Fogelman I. The clinical role of dual energy X-ray absorptiometry. Eur J Radiol. 2009;71:406–14.

    Article  PubMed  Google Scholar 

  3. Guglielmi G, Schneider P, Lang TF, et al. Quantitative computed tomography at the axial and peripheral skeleton. Eur Radiol. 1997;7 Suppl 2:S32–42.

    Article  PubMed  Google Scholar 

  4. Lang TF. Quantitative computed tomography. Radiol Clin North Am. 2010;48:589–600.

    Article  PubMed  Google Scholar 

  5. Hughes TJR. The Finite Element Method: linear static and dynamic finite element analysis. Englewood Cliffs, NJ: Prentice-Hall, Inc; 1987.

    Google Scholar 

  6. Les CM, Keyak JH, Stover SM, et al. Estimation of material properties in the equine metacarpus with use of quantitative computed tomography. J Orthop Res. 1994;12:822–33.

    Article  PubMed  Google Scholar 

  7. Kopperdahl DL, Morgan EF, Keaveny TM. Quantitative computed tomography estimates of the mechanical properties of human vertebral trabecular bone. J Orthop Res. 2002;20:801–5.

    Article  PubMed  Google Scholar 

  8. Cerveri P, Manzotti A, Marchente M, et al. Mean-shifted surface curvature algorithm for automatic bone shape segmentation in orthopedic surgery planning: a sensitivity analysis. Comput Aided Surg. 2012;17:128–41.

    Article  PubMed  Google Scholar 

  9. Wu C, Murtha PE, Jaramaz B. Femur statistical atlas construction based on two-level 3D non-rigid registration. Comput Aided Surg. 2009;14:83–99.

    Article  PubMed  Google Scholar 

  10. Dai Y, Niebur GL. A semi-automated method for hexahedral mesh construction of human vertebrae from CT scans. Comput Methods Biomech Biomed Engin. 2009;12:599–606.

    Article  PubMed  Google Scholar 

  11. Melton 3rd LJ, Riggs BL, Keaveny TM, et al. Structural determinants of vertebral fracture risk. J Bone Miner Res. 2007;22:1885–92.

    Article  PubMed  Google Scholar 

  12. Keyak JH, Kaneko TS, Tehranzadeh J, Skinner HB. Predicting proximal femoral strength using structural engineering models. Clin Orthop Relat Res. 2005;437:219–28.

    Google Scholar 

  13. Ramos A, Simoes JA. Tetrahedral vs hexahedral finite elements in numerical modelling of the proximal femur. Med Eng Phys. 2006;28:916–24.

    Article  PubMed  Google Scholar 

  14. Kaneko TS, Bell JS, Pejcic MR, et al. Mechanical properties, density, and quantitative CT scan data of trabecular bone with and without metastases. J Biomech. 2004;37:523–30.

    Article  PubMed  Google Scholar 

  15. Rohlmann A, Gabel U, Graichen F, et al. An instrumented implant for vertebral body replacement that measures loads in the anterior spinal column. Med Eng Phys. 2007;29:580–5.

    Article  PubMed  Google Scholar 

  16. Rohlmann A, Petersen R, Schwachmeyer V, et al. Spinal loads during position changes. Clin Biomech. 2012;27:754–8.

    Article  Google Scholar 

  17. Stansfield BW, Nicol AC, Paul JP, et al. Direct comparison of calculated hip joint contact forces with those measured using instrumented implants. An evaluation of a three-dimensional mathematical model of the lower limb. J Biomech. 2003;36:929–36.

    Article  PubMed  Google Scholar 

  18. Delp SL, Anderson FC, Arnold AS, et al. OpenSim: open-source software to create and analyze dynamic simulations of movement. IEEE Trans Biomed Eng. 2007;54:1940–50.

    Article  PubMed  Google Scholar 

  19. Keyak JH, Rossi SA, Jones KA, et al. Prediction of fracture location in the proximal femur using finite element models. Med Eng Phys. 2001;23:657–64.

    Article  PubMed  Google Scholar 

  20. Danielson ME, Beck TJ, Karlamangla AS, et al. A comparison of DXA and CT based methods for estimating the strength of the femoral neck in post-menopausal women. Osteoporos Int. 2013. In press.

  21. • Christiansen BA, Kopperdahl DL, Kiel DP, et al. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res. 2011;26:974–83. Demonstrates different rates of decline in the strength of the peripheral (mostly cortical bone) and trabecular bone compartments in the vertebrae of men and women.

    Article  PubMed  Google Scholar 

  22. Dickinson AS, Taylor AC, Ozturk H, Browne M. Experimental validation of a finite element model of the proximal femur using digital image correlation and a composite bone model. J Biomech Eng. 2011;133:014504.

    Article  PubMed  Google Scholar 

  23. Keyak JH, Rossi SA, Jones KA, Skinner HB. Prediction of femoral fracture load using automated finite element modeling. J Biomech. 1998;31:125–33.

    Article  PubMed  Google Scholar 

  24. Cody DD, Gross GJ, Hou FJ, et al. Femoral strength is better predicted by finite element models than QCT and DXA. J Biomech. 1999;32:1013–20.

    Article  PubMed  Google Scholar 

  25. Crawford RP, Rosenberg WS, Keaveny TM. Quantitative computed tomography-based finite element models of the human lumbar vertebral body: effect of element size on stiffness, damage, and fracture strength predictions. J Biomech Eng. 2003;125:434–8.

    Article  PubMed  Google Scholar 

  26. Faulkner KG, Cann CE, Hasegawa BH. Effect of bone distribution on vertebral strength: assessment with patient-specific nonlinear finite element analysis. Radiology. 1991;179:669–74.

    PubMed  Google Scholar 

  27. •• Wang X, Sanyal A, Cawthon PM, et al. Prediction of new clinical vertebral fractures in elderly men using finite element analysis of CT scans. J Bone Miner Res. 2012;27:808–16. Shows the ability of FEA to prospectively predict vertebral fracture risk.

    Article  PubMed  Google Scholar 

  28. • Graeff C, Marin F, Petto H, et al. High resolution quantitative computed tomography-based assessment of trabecular microstructure and strength estimates by finite-element analysis of the spine, but not DXA, reflects vertebral fracture status in men with glucocorticoid-induced osteoporosis. Bone. 2013;52:568–77. Uses high resolution QCT for improved vertebral FEA.

    Article  PubMed  Google Scholar 

  29. Keaveny TM, Donley DW, Hoffmann PF, et al. Effects of teriparatide and alendronate on vertebral strength as assessed by finite element modeling of QCT scans in women with osteoporosis. J Bone Miner Res. 2007;22:149–57.

    Article  PubMed  Google Scholar 

  30. Lewiecki EM, Keaveny TM, Kopperdahl DL, et al. Once-monthly oral ibandronate improves biomechanical determinants of bone strength in women with postmenopausal osteoporosis. J Clin Endocrinol Metab. 2009;94:171–80.

    Article  PubMed  Google Scholar 

  31. Graeff C, Chevalier Y, Charlebois M, et al. Improvements in vertebral body strength under teriparatide treatment assessed in vivo by finite element analysis: results from the EUROFORS study. J Bone Miner Res. 2009;24:1672–80.

    Article  PubMed  Google Scholar 

  32. Cosman F, Keaveny TM, Kopperdahl D, et al. Hip and spine strength effects of adding vs switching to teriparatide in postmenopausal women with osteoporosis treated with prior alendronate or raloxifene. J Bone Miner Res. 2013 (in press).

  33. Cummings SR, Melton LJ. Epidemiology and outcomes of osteoporotic fractures. Lancet. 2002;359:1761–7.

    Article  PubMed  Google Scholar 

  34. Burge R, Dawson-Hughes B, Solomon DH, et al. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res. 2007;22:465–75.

    Article  PubMed  Google Scholar 

  35. Keyak JH, Meagher JM, Skinner HB, Mote Jr CD. Automated three-dimensional finite element modelling of bone: a new method. J Biomed Eng. 1990;12:389–97.

    Article  PubMed  Google Scholar 

  36. Sigurdsson G, Aspelund T, Chang M, et al. Increasing sex difference in bone strength in old age: the Age, Gene/Environment Susceptibility-Reykjavik study (AGES-REYKJAVIK). Bone. 2006;39:644–51.

    Article  PubMed  Google Scholar 

  37. • Lang TF, Sigurdsson S, Karlsdottir G, et al. Age-related loss of proximal femoral strength in elderly men and women: the Age Gene/Environment Susceptibility Study–Reykjavik. Bone. 2012;50:743–8. Shows a faster rate of age-related loss of femoral strength in women, with greatest losses in the fall loading configuration.

    Article  PubMed  Google Scholar 

  38. Carpenter RD, Keyak JH, Patsch JM, et al. Women with type 2 diabetes have increased femoral neck BMD but not increased femoral strength [abstract FR0061]. Proceedings of the American Society for Bone and Mineral Research Annual Meeting. San Diego, CA; September 16–20, 2011.

  39. • Orwoll ES, Marshall LM, Nielson CM, et al. Finite element analysis of the proximal femur and hip fracture risk in older men. J Bone Miner Res. 2009;24:475–83. Uses FEA to propectively predict hip fracture risk in men.

    Article  PubMed  Google Scholar 

  40. •• Keyak JH, Sigurdsson S, Karlsdottir G, et al. Male-female differences in the association between incident hip fracture and proximal femoral strength: a finite element analysis study. Bone. 2011;48:1239–45. Uses FEA to propectively predict hip fracture risk in both men and women.

    Article  PubMed  Google Scholar 

  41. Keaveny TM, McClung MR, Wan X, et al. Femoral strength in osteoporotic women treated with teriparatide or alendronate. Bone. 2012;50:165–70.

    Article  PubMed  Google Scholar 

  42. Keaveny TM, Hoffmann PF, Singh M, et al. Femoral bone strength and its relation to cortical and trabecular changes after treatment with PTH, alendronate, and their combination as assessed by finite element analysis of quantitative CT scans. J Bone Miner Res. 2008;23:1974–82.

    Article  PubMed  Google Scholar 

  43. Keyak JH, Koyama AK, LeBlanc A, et al. Reduction in proximal femoral strength due to long-duration spaceflight. Bone. 2009;44:449–53.

    Article  PubMed  Google Scholar 

  44. Genc KO. The effects of altered gravity environments on the mechanobiology of bone: from bedrest to spaceflight (Doctoral Dissertation) 2011, Case Western Reserve University.

  45. Smith SM, Heer MA, Shackelford LC, et al. Benefits for bone from resistance exercise and nutrition in long-duration spaceflight: evidence from biochemistry and densitometry. J Bone Miner Res. 2012;27:1896–906.

    Article  PubMed  Google Scholar 

Download references

Disclosure

RD Carpenter declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dana Carpenter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpenter, R.D. Finite Element Analysis of the Hip and Spine Based on Quantitative Computed Tomography. Curr Osteoporos Rep 11, 156–162 (2013). https://doi.org/10.1007/s11914-013-0141-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-013-0141-8

Keywords

Navigation