Skip to main content
Log in

Microarchitectural Changes in the Aging Skeleton

  • Epidemiology and Pathophysiology (Mone Zaidi and Jeffrey I. Mechanick, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

The age-related reduction in bone mass is disproportionally related to skeletal weakening, suggesting that microarchitectural changes are also important determinants of bone quality. The study of cortical and trabecular microstructure, which for many years was mainly based on two-dimensional histologic and scanning electron microscopy imaging, gained a tremendous momentum in the last decade and a half, due to the introduction of microcomputed tomography (μCT). This technology provides highly accurate qualitative and quantitative analyses based on three-dimensional images at micrometer resolution, which combined with finite elemental analysis predicts the biomechanical implications of microstructural changes. Global μCT analyses of trabecular bone have repeatedly suggested that the main age-related change in this compartment is a decrease in trabecular number with unaltered, or even increased, trabecular thickness. However, we show here that this may result from a bias whereby thick trabeculae near the cortex and the early clearance of thin struts mask authentic trabecular thinning. The main cortical age-related change is increased porosity due to negatively balanced osteonal remodeling and expansion of Haversian canals, which occasionally merge with endosteal and periosteal resorption bays, thus leading to rapid cortical thinning and cortical weakening. The recent emergence of CT systems with submicrometer resolution provides novel information on the age-related decrease in osteocyte lacunar density and related micropetrosis, the result of lacunar hypermineralization. Last but not least, the use of the submicrometer CT systems confirmed the occurrence of microcracks in the skeletal mineralized matrix and vastly advanced their morphologic characterization and mode of initiation and propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Muller R, Hildebrand T, Hauselmann HJ, Ruegsegger P. In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res. 1996;11:1745–50.

    Article  PubMed  CAS  Google Scholar 

  2. Laib A, Ruegsegger P. Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone. 1999;24:35–9.

    Article  PubMed  CAS  Google Scholar 

  3. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22:425–33.

    Article  PubMed  Google Scholar 

  4. Cohen A, Dempster DW, Muller R, Guo XE, Nickolas TL, Liu XS, et al. Assessment of trabecular and cortical architecture and mechanical competence of bone by high-resolution peripheral computed tomography: comparison with transiliac bone biopsy. Osteoporos Int. 2010;21:263–73.

    Article  PubMed  CAS  Google Scholar 

  5. Doube M, Klosowski MM, Arganda-Carreras I, Cordelieres FP, Dougherty RP, Jackson JS, et al. BoneJ: free and extensible bone image analysis in ImageJ. Bone. 2010;47:1076–9.

    Article  PubMed  Google Scholar 

  6. • Liu XS, Bevill G, Keaveny TM, Sajda P, Guo XE. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech. 2009;42:249–56. This study provides a differential analysis of the contribution of rod-like versus plate-like struts to biomechanical competence of trabecular bone, highlighting the importance of longitudinal plates and supporting transverse rods.

    Article  PubMed  Google Scholar 

  7. Cortet B, Chappard D, Boutry N, Dubois P, Cotten A, Marchandise X. Relationship between computed tomographic image analysis and histomorphometry for microarchitectural characterization of human calcaneus. Calcif Tissue Int. 2004;75:23–31.

    Article  PubMed  CAS  Google Scholar 

  8. Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M. Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res. 2005;20:1177–84.

    Article  PubMed  Google Scholar 

  9. Thomsen JS, Laib A, Koller B, Prohaska S, Mosekilde L, Gowin W. Stereological measures of trabecular bone structure: comparison of 3D micro computed tomography with 2D histological sections in human proximal tibial bone biopsies. J Microsc. 2005;218:171–9.

    Article  PubMed  CAS  Google Scholar 

  10. Homminga J, Van-Rietbergen B, Lochmuller EM, Weinans H, Eckstein F, Huiskes R. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone. 2004;34:510–6.

    Article  PubMed  CAS  Google Scholar 

  11. •• Green JO, Nagaraja S, Diab T, Vidakovic B, Guldberg RE. Age-related changes in human trabecular bone: Relationship between microstructural stress and strain and damage morphology. J Biomech. 2011; In press. This study combines histologic damage assessment of individual trabeculae with linear finite element analysis demonstrating a reduction in damage initiation threshold between pre- and postmenopausal femoral bone.

  12. Wade-Gueye NM, Boudiffa M, Laroche N, Vanden-Bossche A, Fournier C, Aubin JE, et al. Mice lacking bone sialoprotein (BSP) lose bone after ovariectomy and display skeletal site-specific response to intermittent PTH treatment. Endocrinology. 2010;151:5103–13.

    Article  PubMed  CAS  Google Scholar 

  13. •• Schulte FA, Lambers FM, Kuhn G, Muller R. In vivo micro-computed tomography allows direct three-dimensional quantification of both bone formation and bone resorption parameters using time-lapsed imaging. Bone. 2011;48:433–42. This article reports a technologic breakthrough whereby dynamic changes in bone microarchitecture (ie, bone formation and bone resorption rates) are measured based on 3D, in vivo time-lapse μCT images.

    Article  PubMed  Google Scholar 

  14. Chung HW, Wehrli FW, Williams JL, Kugelmass SD, Wehrli SL. Quantitative analysis of trabecular microstructure by 400 MHz nuclear magnetic resonance imaging. J Bone Miner Res. 1995;10:803–11.

    Article  PubMed  CAS  Google Scholar 

  15. Kazakia GJ, Majumdar S. New imaging technologies in the diagnosis of osteoporosis. Rev Endocr Metab Disord. 2006;7:67–74.

    Article  PubMed  Google Scholar 

  16. Beck JS, Nordin BE. Histological assessment of osteoporosis by iliac crest biopsy. J Pathol Bacteriol. 1960;80:391–7.

    Article  PubMed  CAS  Google Scholar 

  17. Vedi S, Compston JE, Webb A, Tighe JR. Histomorphometric analysis of bone biopsies from the iliac crest of normal British subjects. Metab Bone Dis Relat Res. 1982;4:231–6.

    Article  PubMed  CAS  Google Scholar 

  18. Marshall D, Johnell O, Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures. BMJ Clinical research ed. 1996;312:1254–9.

    Article  PubMed  CAS  Google Scholar 

  19. Stone KL, Seeley DG, Lui LY, Cauley JA, Ensrud K, Browner WS, et al. BMD at multiple sites and risk of fracture of multiple types: long-term results from the Study of Osteoporotic Fractures. J Bone Miner Res. 2003;18:1947–54.

    Article  PubMed  Google Scholar 

  20. Schuit SC, van der Klift M, Weel AE, de Laet CE, Burger H, Seeman E, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34:195–202.

    Article  PubMed  CAS  Google Scholar 

  21. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int. 1985;37:594–7.

    Article  PubMed  CAS  Google Scholar 

  22. • Djuric M, Djonic D, Milovanovic P, Nikolic S, Marshall R, Marinkovic J, et al. Region-specific sex-dependent pattern of age-related changes of proximal femoral cancellous bone and its implications on differential bone fragility. Calcif Tissue Int. 2010;86:192–201. This article reports for the first time age-related site differences in microarchitectural deterioration between men and women.

    Article  PubMed  CAS  Google Scholar 

  23. •• Glatt V, Canalis E, Stadmeyer L, Bouxsein ML. Age-related changes in trabecular architecture differ in female and male C57BL/6 J mice. J Bone Miner Res. 2007;22:1197–207. This paper and Bab et al. [24••], which were published in the same year, provide comprehensive analyses of cortical and trabecular microarchitectural, age- and sex-related changes in mouse femora and lumbar vertebrae.

    Article  PubMed  Google Scholar 

  24. •• Bab I, Hajbi-Yonissi C, Gabet Y, Müller R. Micro-Tomographic Atlas of the Mouse Skeleton. First Edition. New York: Springer; 2007. This is a comprehensive atlas providing detailed μCT images and textual description of the entire mouse skeleton. In addition, it provides analyses of age- and sex-related variations in bone microstructure similar to Glatt et al. [23••] as well as microstructural differences between several “popular” mouse strains.

    Google Scholar 

  25. Duque G, Rivas D, Li W, Li A, Henderson JE, Ferland G, et al. Age-related bone loss in the LOU/c rat model of healthy ageing. Exp Gerontol. 2009;44:183–9.

    Article  PubMed  Google Scholar 

  26. • Willinghamm MD, Brodt MD, Lee KL, Stephens AL, Ye J, Silva MJ. Age-related changes in bone structure and strength in female and male BALB/c mice. Calcif Tissue Int. 2010;86:470–83. This study provides a correlative analysis between age-related microstructural and biomechanical changes at the cortical, trabecular, and whole bone levels in mouse femora and radii.

    Article  PubMed  CAS  Google Scholar 

  27. Syed FA, Modder UI, Roforth M, Hensen I, Fraser DG, Peterson JM, et al. Effects of chronic estrogen treatment on modulating age-related bone loss in female mice. J Bone Miner Res. 2010;25:2438–46.

    Article  PubMed  CAS  Google Scholar 

  28. • Christiansen BA, Kopperdahl DL, Kiel DP, Keaveny TM, Bouxsein ML. Mechanical contributions of the cortical and trabecular compartments contribute to differences in age-related changes in vertebral body strength in men and women assessed by QCT-based finite element analysis. J Bone Miner Res. 2011;26:974–83. This is a pQCT-based finite elemental analysis in human thoracic and lumbar vertebral bodies showing that men and women lose vertebral bone differently with age, particularly in the cortical compartment, which explains why vertebral strength decreased with age twofold more in women than in men.

    Article  PubMed  Google Scholar 

  29. Mueller TL, van Lenthe GH, Stauber M, Gratzke C, Eckstein F, Muller R. Regional, age and gender differences in architectural measures of bone quality and their correlation to bone mechanical competence in the human radius of an elderly population. Bone. 2009;45:882–91.

    Article  PubMed  Google Scholar 

  30. Mosekilde L, Ebbesen EN, Tornvig L, Thomsen JS. Trabecular bone structure and strength - remodelling and repair. J Musculoskelet Neuronal Interact. 2000;1:25–30.

    PubMed  CAS  Google Scholar 

  31. Ding M, Odgaard A, Linde F, Hvid I. Age-related variations in the microstructure of human tibial cancellous bone. J Orthop Res. 2002;20:615–21.

    Article  PubMed  Google Scholar 

  32. Stauber M, Muller R. Age-related changes in trabecular bone microstructures: global and local morphometry. Osteoporos Int. 2006;17:616–26.

    Article  PubMed  CAS  Google Scholar 

  33. Mosekilde L. Age-related changes in vertebral trabecular bone architecture–assessed by a new method. Bone. 1988;9:247–50.

    Article  PubMed  CAS  Google Scholar 

  34. Bell GH, Dunbar O, Beck JS, Gibb A. Variations in strength of vertebrae with age and their relation to osteoporosis. Calcified tissue research. 1967;1:75–86.

    Article  PubMed  CAS  Google Scholar 

  35. Odgaard A, Gundersen HJ. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14:173–82.

    Article  PubMed  CAS  Google Scholar 

  36. Aaron JE, Shore PA, Shore RC, Beneton M, Kanis JA. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone. 2000;27:277–82.

    Article  PubMed  CAS  Google Scholar 

  37. Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15:13–9.

    Article  PubMed  CAS  Google Scholar 

  38. Park SH, Kim SJ, Park BC, Suh KJ, Lee JY, Park CW, et al. Three-dimensional osseous micro-architecture of the distal humerus: implications for internal fixation of osteoporotic fracture. J Shoulder Elbow Surg. 2010;19:244–50.

    Article  PubMed  Google Scholar 

  39. Oleksik A, Ott SM, Vedi S, Bravenboer N, Compston J, Lips P. Bone structure in patients with low bone mineral density with or without vertebral fractures. J Bone Miner Res. 2000;15:1368–75.

    Article  PubMed  CAS  Google Scholar 

  40. Jordan GR, Loveridge N, Bell KL, Power J, Rushton N, Reeve J. Spatial clustering of remodeling osteons in the femoral neck cortex: a cause of weakness in hip fracture? Bone. 2000;26:305–13.

    Article  PubMed  CAS  Google Scholar 

  41. Crabtree N, Loveridge N, Parker M, Rushton N, Power J, Bell KL, et al. Intracapsular hip fracture and the region-specific loss of cortical bone: analysis by peripheral quantitative computed tomography. J Bone Miner Res. 2001;16:1318–28.

    Article  PubMed  CAS  Google Scholar 

  42. Chen H, Zhou X, Shoumura S, Emura S, Bunai Y. Age- and gender-dependent changes in three-dimensional microstructure of cortical and trabecular bone at the human femoral neck. Osteoporos Int. 2010;21:627–36.

    Article  PubMed  CAS  Google Scholar 

  43. Ward KA, Pye SR, Adams JE, Boonen S, Vanderschueren D, Borghs H, et al. Influence of age and sex steroids on bone density and geometry in middle-aged and elderly European men. Osteoporos Int. 2011;22:1513–23.

    Article  PubMed  CAS  Google Scholar 

  44. Duan Y, Seeman E, Turner CH. The biomechanical basis of vertebral body fragility in men and women. J Bone Miner Res. 2001;16:2276–83.

    Article  PubMed  CAS  Google Scholar 

  45. Duan Y, Turner CH, Kim BT, Seeman E. Sexual dimorphism in vertebral fragility is more the result of gender differences in age-related bone gain than bone loss. J Bone Miner Res. 2001;16:2267–75.

    Article  PubMed  CAS  Google Scholar 

  46. Augat P, Schorlemmer S. The role of cortical bone and its microstructure in bone strength. Age Ageing. 2006;35 Suppl 2:ii27–31.

    Article  PubMed  Google Scholar 

  47. Cooper DM, Thomas CD, Clement JG, Turinsky AL, Sensen CW, Hallgrimsson B. Age-dependent change in the 3D structure of cortical porosity at the human femoral midshaft. Bone. 2007;40:957–65.

    Article  PubMed  Google Scholar 

  48. Seeman E. The growth and age-related origins of bone fragility in men. Calcif Tissue Int. 2004;75:100–9.

    PubMed  CAS  Google Scholar 

  49. Teti A, Zallone A. Do osteocytes contribute to bone mineral homeostasis? Osteocytic osteolysis revisited. Bone. 2009;44:11–6.

    Article  PubMed  CAS  Google Scholar 

  50. Okada S, Yoshida S, Ashrafi SH, Schraufnagel DE. The canalicular structure of compact bone in the rat at different ages. Microsc Microanal. 2002;8:104–15.

    Article  PubMed  CAS  Google Scholar 

  51. Wang X, Ni Q. Determination of cortical bone porosity and pore size distribution using a low field pulsed NMR approach. J Orthop Res. 2003;21:312–9.

    Article  PubMed  Google Scholar 

  52. McCreadie BR, Hollister SJ, Schaffler MB, Goldstein SA. Osteocyte lacuna size and shape in women with and without osteoporotic fracture. J Biomech. 2004;37:563–72.

    Article  PubMed  Google Scholar 

  53. You LD, Weinbaum S, Cowin SC, Schaffler MB. Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A Discov Mol Cell Evol Biol. 2004;278:505–13.

    Article  PubMed  Google Scholar 

  54. Beno T, Yoon YJ, Cowin SC, Fritton SP. Estimation of bone permeability using accurate microstructural measurements. J Biomech. 2006;39:2378–87.

    Article  PubMed  Google Scholar 

  55. Torres-Lagares D, Tulasne JF, Pouget C, Llorens A, Saffar JL, Lesclous P. Structure and remodelling of the human parietal bone: an age and gender histomorphometric study. J Craniomaxillofac Surg. 2010;38:325–30.

    Article  PubMed  Google Scholar 

  56. •• Busse B, Djonic D, Milovanovic P, Hahn M, Puschel K, Ritchie RO, et al. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging cell. 2010;9:1065–75. This article reports an age-related decrease in osteocyte lacunar density and increased occurrence of lacunar hypermineralization.

    Article  PubMed  CAS  Google Scholar 

  57. Vashishth D, Gibson GJ, Fyhrie DP. Sexual dimorphism and age dependence of osteocyte lacunar density for human vertebral cancellous bone. Anat Rec A Discov Mol Cell Evol Biol. 2005;282:157–62.

    PubMed  Google Scholar 

  58. Qiu S, Rao DS, Palnitkar S, Parfitt AM. Reduced iliac cancellous osteocyte density in patients with osteoporotic vertebral fracture. J Bone Miner Res. 2003;18:1657–63.

    Article  PubMed  Google Scholar 

  59. Parfitt AM. Bone age, mineral density, and fatigue damage. Calcif Tissue Int. 1993;53 Suppl 1:S82–5. discussion S5-6.

    Article  PubMed  Google Scholar 

  60. Bonewald LF. Osteocytes as dynamic multifunctional cells. Ann N Y Acad Sci. 2007;1116:281–90.

    Article  PubMed  CAS  Google Scholar 

  61. Lee TC, Mohsin S, Taylor D, Parkesh R, Gunnlaugsson T, O’Brien FJ, et al. Detecting microdamage in bone. J Anat. 2003;203:161–72.

    Article  PubMed  CAS  Google Scholar 

  62. O’Brien FJ, Taylor D, Dickson GR, Lee TC. Visualisation of three-dimensional microcracks in compact bone. J Anat. 2000;197(Pt 3):413–20.

    Article  PubMed  Google Scholar 

  63. Beck BR. Tibial stress injuries. An aetiological review for the purposes of guiding management. Sports Med. 1998;26:265–79.

    Article  PubMed  CAS  Google Scholar 

  64. Burr DB. Bone, exercise, and stress fractures. Exercise and sport sciences reviews. 1997;25:171–94.

    Article  PubMed  CAS  Google Scholar 

  65. Lee TC, Staines A, Taylor D. Bone adaptation to load: microdamage as a stimulus for bone remodelling. J Anat. 2002;201:437–46.

    Article  PubMed  CAS  Google Scholar 

  66. Martin RB. Toward a unifying theory of bone remodeling. Bone. 2000;26:1–6.

    Article  PubMed  CAS  Google Scholar 

  67. Prendergast PJ, Taylor D. Design of intramedullary prostheses to prevent bone loss: predictions based on damage-stimulated remodelling. J Biomed Eng. 1992;14:499–506.

    Article  PubMed  CAS  Google Scholar 

  68. Viceconti M, Seireg A. A generalized procedure for predicting bone mass regulation by mechanical strain. Calcif Tissue Int. 1990;47:296–301.

    Article  PubMed  CAS  Google Scholar 

  69. Lee TC, Myers ER, Hayes WC. Fluorescence-aided detection of microdamage in compact bone. J Anat. 1998;193(Pt 2):179–84.

    Article  PubMed  Google Scholar 

  70. Vashishth D, Verborgt O, Divine G, Schaffler MB, Fyhrie DP. Decline in osteocyte lacunar density in human cortical bone is associated with accumulation of microcracks with age. Bone. 2000;26:375–80.

    Article  PubMed  CAS  Google Scholar 

  71. Norman TL, Little TM, Yeni YN. Age-related changes in porosity and mineralization and in-service damage accumulation. J Biomech. 2008;41:2868–73.

    Article  PubMed  Google Scholar 

  72. •• Voide R, Schneider P, Stauber M, Wyss P, Stampanoni M, Sennhauser U, et al. Time-lapsed assessment of microcrack initiation and propagation in murine cortical bone at submicrometer resolution. Bone. 2009;45:164–73. This paper reports an experimental model in mice to analyze microcrack initiation and progression by synchrotron radiation CT at submicrometric resolution. It shows that with increasing strain microcracks begin in bone surfaces and propagate traversing osteocyte lacunae.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Itai Bab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gabet, Y., Bab, I. Microarchitectural Changes in the Aging Skeleton. Curr Osteoporos Rep 9, 177–183 (2011). https://doi.org/10.1007/s11914-011-0072-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-011-0072-1

Keywords

Navigation