Skip to main content

Advertisement

Log in

Mechanical Loading: Bone Remodeling and Cartilage Maintenance

  • Epidemiology and Pathophysiology (Mone Zaidi and Jeffrey I. Mechanick, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Bone remodeling and cartilage maintenance are strongly influenced by biomechanical signals generated by mechanical loading. Although moderate loading is required to maintain bone mass and cartilage homeostasis, loading can cause deleterious effects such as bone fracture and cartilage degradation. Because a tight coupling exists between cartilage and bone, alterations in one tissue can affect the other. Bone marrow lesions are often associated with an increased risk of developing cartilage defects, and changes in the articular cartilage integrity are linked to remodeling responses in the underlying bone. Although mechanisms regulating the maintenance of these two tissues are different, compelling evidence indicates that the signal pathways crosstalk, particularly with the Wnt pathway. A better understanding of the complex tempero-spatial interplay between bone remodeling and cartilage degeneration will help develop a therapeutic loading strategy that prevents bone loss and cartilage degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lang T, LeBlanc A, Evans H, et al. Cortical and trabecular bone mineral loss from the spine and hip in long-duration spaceflight. J Bone Miner Res. 2004;19:1006–12.

    Article  PubMed  Google Scholar 

  2. Scheld K, Zittermann A, Heer M, et al. Nitrogen metabolism and bone metabolism markers in healthy adults during 16 weeks of bed rest. Clin Chem. 2001;47:1688–95.

    PubMed  CAS  Google Scholar 

  3. Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. 1999;17:346–53.

    Article  PubMed  CAS  Google Scholar 

  4. Entwistle RC, Sammons SC, Bigley RF, et al. Material properties are related to stress fracture callus and porosity of cortical bone tissue at affected and unaffected sites. J Orthop Res. 2009;27:1272–9.

    Article  PubMed  Google Scholar 

  5. Linden C, Ahlborg HG, Besjakov J, et al. A school curriculum-based exercise program increases bone mineral accrual and bone size in prepubertal girls: two-year data from the pediatric osteoporosis prevention (POP) study. J Bone Miner Res. 2006;21:829–35.

    Article  PubMed  Google Scholar 

  6. Bass SL, Naughton G, Saxon L, et al. Exercise and calcium combined results in a greater osteogenic effect than either factor alone: a blinded randomized placebo-controlled trial in boys. J Bone Miner Res. 2007;22:458–64.

    Article  PubMed  CAS  Google Scholar 

  7. Wang Q, Alen M, Nicholson P, et al. Weight-bearing, muscle loading and bone mineral accrual in pubertal girls—a 2-year longitudinal study. Bone. 2007;40:1196–202.

    Article  PubMed  Google Scholar 

  8. Engelke K, Kemmler W, Lauber D, et al. Exercise maintains bone density at spine and hip EFOPS: a 3-year longitudinal study in early postmenopausal women. Osteoporos Int. 2006;17:133–42.

    Article  PubMed  CAS  Google Scholar 

  9. Zhang P, Hamamura K, Yokota H, et al. Potential applications of pulsating joint loading in sports medicine. Exerc Sport Sci Rev. 2009;37:52–6.

    Article  PubMed  Google Scholar 

  10. Zhang P, Malacinski GM, Yokota H. Joint loading modality: its application to bone formation and fracture healing. Br J Sports Med. 2008;42:556–60.

    Article  PubMed  CAS  Google Scholar 

  11. Sun HB, Cardoso L, Yokota H. Mechanical intervention for maintenance of cartilage and bone. Clin Med Insights Arthritis Musculoskelet Disord. 2011;4:1–6.

    Google Scholar 

  12. Mandelbaum BR, Browne JE, Fu F, et al. Articular cartilage lesions of the knee. Am J Sports Med. 1998;26:853–61.

    PubMed  CAS  Google Scholar 

  13. Moti AW, Micheli LJ. Meniscal and articular cartilage injury in the skeletally immature knee. Instr Course Lect. 2003;52:683–90.

    PubMed  Google Scholar 

  14. Smith AD, Tao SS. Knee injuries in young athletes. Clin Sports Med. 1995;14:629–50.

    PubMed  CAS  Google Scholar 

  15. Speer KP, Spritzer CE, Bassett 3rd FH, et al. Osseous injury associated with acute tears of the anterior cruciate ligament. Am J Sports Med. 1992;20:382–9.

    Article  PubMed  CAS  Google Scholar 

  16. Meyer EG, Baumer TG, Slade JM, et al. Tibiofemoral contact pressures and osteochondral microtrauma during anterior cruciate ligament rupture due to excessive compressive loading and internal torque of the human knee. Am J Sports Med. 2008;36:1966–77.

    Article  PubMed  Google Scholar 

  17. Jones MH, Amendola AS. Acute treatment of inversion ankle sprains: immobilization versus functional treatment. Clin Orthop Relat Res. 2007;455:169–72.

    Article  PubMed  Google Scholar 

  18. McCarthy C, Oakley E. Management of suspected cervical spine injuries—the paediatric perspective. Accid Emerg Nurs. 2002;10:163–9.

    Article  PubMed  CAS  Google Scholar 

  19. Haapala J, Arokoski JP, Hyttinen MM, et al. Remobilization does not fully restore immobilization induced articular cartilage atrophy. Clin Orthop Relat Res. 1999:218–29

  20. Jurvelin J, Kiviranta I, Tammi M, et al. Softening of canine articular cartilage after immobilization of the knee joint. Clin Orthop Relat Res. 1986:246–52

  21. Haapala J, Arokoski J, Pirttimaki J, et al. Incomplete restoration of immobilization induced softening of young beagle knee articular cartilage after 50-week remobilization. Int J Sports Med. 2000;21:76–81.

    Article  PubMed  CAS  Google Scholar 

  22. Haapala J, Lammi MJ, Inkinen R, et al. Coordinated regulation of hyaluronan and aggrecan content in the articular cartilage of immobilized and exercised dogs. J Rheumatol. 1996;23:1586–93.

    PubMed  CAS  Google Scholar 

  23. Evans EB, Eggers GWN, Butler JK, et al. Experimental immobilization and remobilization of rat knee joints. J Bone Joint Surg Am. 1960;42:737–58.

    Google Scholar 

  24. Hagiwara Y, Ando A, Chimoto E, et al. Changes of articular cartilage after immobilization in a rat knee contracture model. J Orthop Res. 2009;27:236–42.

    Article  PubMed  Google Scholar 

  25. Hinterwimmer S, Krammer M, Krotz M, et al. Cartilage atrophy in the knees of patients after 7 weeks of partial load bearing. Arthritis Rheum. 2004;50:2516–20.

    Article  PubMed  CAS  Google Scholar 

  26. Vanwanseele B, Eckstein F, Knecht H, et al. Longitudinal analysis of cartilage atrophy in the knees of patients with spinal cord injury. Arthritis Rheum. 2003;48:3377–81.

    Article  PubMed  CAS  Google Scholar 

  27. Ikenoue T, Trindade MC, Lee MS, et al. Mechanoregulation of human articular chondrocyte aggrecan and type II collagen expression by intermittent hydrostatic pressure in vitro. J Orthop Res. 2003;21:110–6.

    Article  PubMed  CAS  Google Scholar 

  28. Lee DA, Bader DL. Compressive strains at physiological frequencies influence the metabolism of chondrocytes seeded in agarose. J Orthop Res. 1997;15:181–8.

    Article  PubMed  Google Scholar 

  29. Shelton JC, Bader DL, Lee DA. Mechanical conditioning influences the metabolic response of cell-seeded constructs. Cells Tissues Organs. 2003;175:140–50.

    Article  PubMed  Google Scholar 

  30. Manninen P, Riihimaki H, Heliovaara M, et al. Physical exercise and risk of severe knee osteoarthritis requiring arthroplasty. Rheumatology (Oxford). 2001;40:432–7.

    Article  CAS  Google Scholar 

  31. •• Sun HB. Mechanical loading, cartilage degradation, and arthritis. Ann N Y Acad Sci. 2010;1211:37–50. This is a review of how physiologic and nonphysiologic loads regulate cartilage homeostasis and the signaling pathways mediating these effects.

    Article  PubMed  CAS  Google Scholar 

  32. • Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases. Arthritis Res Ther. 2009;11:224. This is a review of the cellular and biochemical mechanisms that regulate cartilage homeostasis and pathology.

    Article  PubMed  Google Scholar 

  33. Bettica P, Cline G, Hart DJ, et al. Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum. 2002;46:3178–84.

    Article  PubMed  Google Scholar 

  34. Pelletier JP, Boileau C, Brunet J, et al. The inhibition of subchondral bone resorption in the early phase of experimental dog osteoarthritis by licofelone is associated with a reduction in the synthesis of MMP-13 and cathepsin K. Bone. 2004;34:527–38.

    Article  PubMed  CAS  Google Scholar 

  35. Day JS, Ding M, van der Linden JC, et al. A decreased subchondral trabecular bone tissue elastic modulus is associated with pre-arthritic cartilage damage. J Orthop Res. 2001;19:914–8.

    Article  PubMed  CAS  Google Scholar 

  36. Beuf O, Ghosh S, Newitt DC, et al. Magnetic resonance imaging of normal and osteoarthritic trabecular bone structure in the human knee. Arthritis Rheum. 2002;46:385–93.

    Article  PubMed  Google Scholar 

  37. Radin EL, Paul IL, Rose RM. Role of mechanical factors in pathogenesis of primary osteoarthritis. Lancet. 1972;1:519–22.

    Article  PubMed  CAS  Google Scholar 

  38. Shimizu M, Tsuji H, Matsui H, et al. Morphometric analysis of subchondral bone of the tibial condyle in osteoarthrosis. Clin Orthop Relat Res. 1993:229–39

  39. Bobinac D, Spanjol J, Zoricic S, et al. Changes in articular cartilage and subchondral bone histomorphometry in osteoarthritic knee joints in humans. Bone. 2003;32:284–90.

    Article  PubMed  Google Scholar 

  40. Karsdal MA, Leeming DJ, Dam EB, et al. Should subchondral bone turnover be targeted when treating osteoarthritis? Osteoarthr Cartil. 2008;16:638–46.

    Article  PubMed  CAS  Google Scholar 

  41. Jiao K, Niu LN, Wang MQ, et al. Subchondral bone loss following orthodontically induced cartilage degradation in the mandibular condyles of rats. Bone. 2011;48:362–71.

    Article  PubMed  CAS  Google Scholar 

  42. Karvonen RL, Miller PR, Nelson DA, et al. Periarticular osteoporosis in osteoarthritis of the knee. J Rheumatol. 1998;25:2187–94.

    PubMed  CAS  Google Scholar 

  43. Shirazi R, Shirazi-Adl A. Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects. J Biomech. 2009;42:2458–65.

    Article  PubMed  CAS  Google Scholar 

  44. Wluka AE, Hanna F, Davies-Tuck M, et al. Bone marrow lesions predict increase in knee cartilage defects and loss of cartilage volume in middle-aged women without knee pain over 2 years. Ann Rheum Dis. 2009;68:850–5.

    Article  PubMed  CAS  Google Scholar 

  45. Crema MD, Roemer FW, Zhu Y, et al. Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: detection with MR imaging—the MOST study. Radiology. 2010;256:855–62.

    Article  PubMed  Google Scholar 

  46. Javaid MK, Lynch JA, Tolstykh I, et al. Pre-radiographic MRI findings are associated with onset of knee symptoms: the most study. Osteoarthr Cartil. 2010;18:323–8.

    Article  PubMed  CAS  Google Scholar 

  47. Roemer FW, Neogi T, Nevitt MC, et al. Subchondral bone marrow lesions are highly associated with, and predict subchondral bone attrition longitudinally: the MOST study. Osteoarthr Cartil. 2010;18:47–53.

    Article  PubMed  CAS  Google Scholar 

  48. • Zhang P, Turner CH, Yokota H. Joint loading-driven bone formation and signaling pathways predicted from genome-wide expression profiles. Bone. 2009;44:989–98. This paper predicted signaling pathways mediating anabolic effects of joint loading on bone.

    Article  PubMed  CAS  Google Scholar 

  49. Cantley LC. The phosphoinositide 3-kinase pathway. Science. 2002;296:1655–7.

    Article  PubMed  CAS  Google Scholar 

  50. Hirasawa H, Jiang C, Zhang P, et al. Mechanical stimulation suppresses phosphorylation of eIF2alpha and PERK-mediated responses to stress to the endoplasmic reticulum. FEBS Lett. 2010;584:745–52.

    Article  PubMed  CAS  Google Scholar 

  51. Pavalko FM, Gerard RL, Ponik SM, et al. Fluid shear stress inhibits TNF-alpha-induced apoptosis in osteoblasts: a role for fluid shear stress-induced activation of PI3-kinase and inhibition of caspase-3. J Cell Physiol. 2003;194:194–205.

    Article  PubMed  CAS  Google Scholar 

  52. Almeida M, Han L, Bellido T, et al. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem. 2005;280:41342–51.

    Article  PubMed  CAS  Google Scholar 

  53. Hughes-Fulford M. Signal transduction and mechanical stress. Sci STKE. 2004:RE12

  54. Yokota H, Goldring MB, Sun HB. CITED2-mediated regulation of MMP-1 and MMP-13 in human chondrocytes under flow shear. J Biol Chem. 2003;278:47275–80.

    Article  PubMed  CAS  Google Scholar 

  55. • Leong DJ, Li YH, Gu XI, et al. Physiological loading of joints prevents cartilage degradation through CITED2. FASEB J. 2011;25:182–91. This paper identified a novel anti-catabolic signaling pathway that suppresses MMP expression in response to physiologic loading.

    Article  PubMed  CAS  Google Scholar 

  56. Lee JY, Taub PJ, Wang L, et al. Identification of CITED2 as a negative regulator of fracture healing. Biochem Biophys Res Commun. 2009;387:641–5.

    Article  PubMed  CAS  Google Scholar 

  57. Dossumbekova A, Anghelina M, Madhavan S, et al. Biomechanical signals inhibit IKK activity to attenuate NF-kappaB transcription activity in inflamed chondrocytes. Arthritis Rheum. 2007;56:3284–96.

    Article  PubMed  CAS  Google Scholar 

  58. Seguin CA, Bernier SM. TNFalpha suppresses link protein and type II collagen expression in chondrocytes: role of MEK1/2 and NF-kappaB signaling pathways. J Cell Physiol. 2003;197:356–69.

    Article  PubMed  Google Scholar 

  59. Hoffmann A, Levchenko A, Scott ML, et al. The IkappaB-NF-kappaB signaling module: temporal control and selective gene activation. Science. 2002;298:1241–5.

    Article  PubMed  CAS  Google Scholar 

  60. Liacini A, Sylvester J, Li WQ, et al. Induction of matrix metalloproteinase-13 gene expression by TNF-alpha is mediated by MAP kinases, AP-1, and NF-kappaB transcription factors in articular chondrocytes. Exp Cell Res. 2003;288:208–17.

    Article  PubMed  CAS  Google Scholar 

  61. Madhavan S, Anghelina M, Sjostrom D, et al. Biomechanical signals suppress TAK1 activation to inhibit NF-kappaB transcriptional activation in fibrochondrocytes. J Immunol. 2007;179:6246–54.

    PubMed  CAS  Google Scholar 

  62. Lawrence T, Gilroy DW, Colville-Nash PR, et al. Possible new role for NF-kappaB in the resolution of inflammation. Nat Med. 2001;7:1291–7.

    Article  PubMed  CAS  Google Scholar 

  63. • Nam J, Aguda BD, Rath B, et al. Biomechanical thresholds regulate inflammation through the NF-kappaB pathway: experiments and modeling. PLoS One. 2009;4:e5262. This paper discusses the development of a mathematical model to demonstrate magnitude-dependent regulation of the NF-κB pathway.

    Article  PubMed  Google Scholar 

  64. Novack DV. Role of NF-kappaB in the skeleton. Cell Res. 2011;21:169–82.

    Article  PubMed  CAS  Google Scholar 

  65. Pufe T, Harde V, Petersen W, et al. Vascular endothelial growth factor (VEGF) induces matrix metalloproteinase expression in immortalized chondrocytes. J Pathol. 2004;202:367–74.

    Article  PubMed  CAS  Google Scholar 

  66. Kurz B, Lemke AK, Fay J, et al. Pathomechanisms of cartilage destruction by mechanical injury. Ann Anat. 2005;187:473–85.

    Article  PubMed  CAS  Google Scholar 

  67. Ferretti M, Madhavan S, Deschner J, et al. Dynamic biophysical strain modulates proinflammatory gene induction in meniscal fibrochondrocytes. Am J Physiol Cell Physiol. 2006;290:C1610–5.

    Article  PubMed  CAS  Google Scholar 

  68. Ferretti M, Gassner R, Wang Z, et al. Biomechanical signals suppress proinflammatory responses in cartilage: early events in experimental antigen-induced arthritis. J Immunol. 2006;177:8757–66.

    PubMed  CAS  Google Scholar 

  69. •• Robling AG, Turner CH. Mechanical signaling for bone modeling and remodeling. Crit Rev Eukaryot Gene Expr. 2009;19:319–38. This is a review of the adaptive response of bone to mechanical stimulation and mechanisms of mechanotransduction in bone.

    PubMed  CAS  Google Scholar 

  70. Hung CT, Allen FD, Pollack SR, et al. Intracellular Ca2+ stores and extracellular Ca2+ are required in the real-time Ca2+ response of bone cells experiencing fluid flow. J Biomech. 1996;29:1411–7.

    Article  PubMed  CAS  Google Scholar 

  71. Genetos DC, Geist DJ, Liu D, et al. Fluid shear-induced ATP secretion mediates prostaglandin release in MC3T3-E1 osteoblasts. J Bone Miner Res. 2005;20:41–9.

    Article  PubMed  CAS  Google Scholar 

  72. Krishnan V, Bryant HU, Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest. 2006;116:1202–9.

    Article  PubMed  CAS  Google Scholar 

  73. Glass 2nd DA, Bialek P, Ahn JD, et al. Canonical Wnt signaling in differentiated osteoblasts controls osteoclast differentiation. Dev Cell. 2005;8:751–64.

    Article  PubMed  CAS  Google Scholar 

  74. Blom AB, van Lent PL, van der Kraan PM, et al. To seek shelter from the WNT in osteoarthritis? WNT-signaling as a target for osteoarthritis therapy. Curr Drug Targets. 2010;11:620–9.

    Article  PubMed  CAS  Google Scholar 

  75. Wu Q, Zhu M, Rosier RN, et al. Beta-catenin, cartilage, and osteoarthritis. Ann N Y Acad Sci. 2010;1192:344–50.

    Article  PubMed  CAS  Google Scholar 

  76. • Funck-Brentano T, Cohen-Solal M. Crosstalk between cartilage and bone: when bone cytokines matter. Cytokine Growth Factor Rev. 2011;22:91–7. This is a review discussing the role bone cytokines play in cartilage remodeling and OA.

    Article  PubMed  CAS  Google Scholar 

  77. Ryu JH, Chun JS. Opposing roles of WNT-5A and WNT-11 in interleukin-1beta regulation of type II collagen expression in articular chondrocytes. J Biol Chem. 2006;281:22039–47.

    Article  PubMed  CAS  Google Scholar 

  78. Zhu M, Tang D, Wu Q, et al. Activation of beta-catenin signaling in articular chondrocytes leads to osteoarthritis-like phenotype in adult beta-catenin conditional activation mice. J Bone Miner Res. 2009;24:12–21.

    Article  PubMed  CAS  Google Scholar 

  79. Lane NE, Nevitt MC, Lui LY, et al. Wnt signaling antagonists are potential prognostic biomarkers for the progression of radiographic hip osteoarthritis in elderly Caucasian women. Arthritis Rheum. 2007;56:3319–25.

    Article  PubMed  CAS  Google Scholar 

  80. Leong DJ, Gu XI, Li Y, et al. Matrix metalloproteinase-3 in articular cartilage is upregulated by joint immobilization and suppressed by passive joint motion. Matrix Biol. 2010;29:420–6.

    Article  PubMed  CAS  Google Scholar 

  81. Jones G, Bennell K, Cicuttini FM. Effect of physical activity on cartilage development in healthy kids. Br J Sports Med. 2003;37:382–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the US National Institutes of Health for funding this work (AR52144 to HY, and AR52743 to HS).

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui B. Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yokota, H., Leong, D.J. & Sun, H.B. Mechanical Loading: Bone Remodeling and Cartilage Maintenance. Curr Osteoporos Rep 9, 237–242 (2011). https://doi.org/10.1007/s11914-011-0067-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-011-0067-y

Keywords

Navigation